TRANSPORTATION RESEARCH COMMITTEE

TRC9903

An Economic and Performance Evaluation of Pavements Constructed with Crushed Stone or Asphalt Stabilized Base Courses

Norman D. Dennis, Jr., Jason Dupree

Final Report

Life Cycle Comparison of Stone versus Asphalt Treated Bases

PROJECT BACKGROUND AND OBJECTIVES

The State of Arkansas Highway and Transportation Department (AHTD) uses either a crushed stone or asphalt treated base course in the construction of its flexible pavements. In general, it is recognized that pavement sections constructed with asphalt treated base courses are cheaper than pavement sections which utilize crushed stone as the base. However, designers are often reluctant to use asphalt treated bases because they fear the thinner pavement sections will not perform as well as the sections designed using crushed stone. Currently only anecdotal evidence exists to support this notion of inferior performance of asphalt treated bases. The purpose of this study was to compare the economic and physical performance of both types of pavement systems under identical, or at least similar, traffic loadings and similar subgrade conditions. A review of the pertinent literature has suggested that asphalt treated bases can successfully replace crushed stone bases, at least in the primary function of providing support for the overlying asphalt surface. It was the intent of this study to verify the performance of the two base course types for the design methods and construction practices encountered in Arkansas.

From a list of over 40 suggested locations only 14 sections of roadway met the criteria to be considered as acceptable companion sections. These 14 sites were geographically dispersed across the State of Arkansas, had sections of both crushed stone and asphalt treated base, were subjected to the same traffic loading and had similar subgrade conditions. Each companion site underwent a thorough field and laboratory investigation to establish layer thicknesses and material properties for both the paving materials and the subgrade soils. The primary pavement distress indicators; rutting, cracking and roughness along with traffic data were extracted from AHTD databases in order to determine current pavement serviceability. Construction documents were also consulted to determine cost of construction and the original design criteria for each companion section. Performance prediction equations were used to establish a target serviceability index for the traffic volumes actually experienced by each section. These target values were then compared to values established from actual field measurements. Initial construction costs and appropriate maintenance and repair costs were used to establish life cycle costs for the pavements systems constructed from each base type.

FINDINGS

While the results of this study produced no absolutes to categorize one base type as clearly superior or clearly inferior for each and every companion section, some general trends were observed.

- The evidence strongly supports the notion that sections using full depth asphalt are cheaper to build and cheaper to maintain on a life cycle cost basis. For the 14 sections investigated, those with asphalt treated based cost \$144,200 (1990 dollars) per lane mile and those with crushed stone cost \$196,700 per lane mile.
- Full depth sections tended to have better rutting resistance than sections using crushed stone.
- Full depth sections tended to have higher subgrade moisture contents than sections using crushed stone.
- Some degree of asphalt stripping was noted in more than 1/3 of the cores taken in the field. The cores exhibiting stripping were almost equally distributed between full depth asphalt sections and crushed stone sections. This high incidence of stripping could ameliorate the practice of using layer coefficients for binder courses higher than those suggested by AASHTO.
- Based on predicted serviceability, crushed stone sections appear, in general, to be performing a little better than the AASHTO design equations would predict, while the full depth sections, in general, tended to perform a little poorer.
- Virtually all of the crushed stone sections were constructed with a thicker section than specified in the construction drawings. Typically the increase in thickness was approximately 10 percent, but in some cases it was over 25 percent. By contrast the pavement sections using full depth asphalt were much more likely to be built to the same thickness as specified in the design. In some cases the as-built thickness was actually less than specified for the full depth sections.

Overall, it appears that both base course types are actually performing in accordance with predicted behavior. Both base course types should be considered in future designs with crushed stone being preferred in areas with poorly drained subgrades and full depth asphalt being preferred in areas where subgrades are more drainable.

		Technical Report Documentation Page
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle		5. Report Date
TRC-9903		Jan 2006
Life Cycle Comparison of Stone versus Asphalt Treated Bases		6. Performing Organization Code
Final Report		
7. Author(s)		8. Performing Organization Report No.
Norman D. Dennis, Jr.	Jason R. Dupree	
9. Performing Organization Name and Addres	SS	10. Work Unit No. (TRAIS)
University of Arkansas, Depart	ment of Civil Engineering	
4190 Bell Engineering Center		11. Contract or Grant No.
Fayetteville, AR 72701		TRC-9903
12. Sponsoring Agency Name and Address		13. Type of Report and Period covered
Arkansas State Highway and Transportation Department		Final Report
P.O. Box 2261		1 Jul 98 thru 31 Dec 01
Little Rock, AR	72203-2261	
		14. Sponsoring Agency Code
15. Supplementary Notes		
Conducted in cooperation with U.S	. Department of Transportation,	· · · · · · · · · · · · · · · · · · ·
Federal Highway A	dministration	
16. Abstract The State of Arkansas Highway and	d Transportation Department (AHT	D) uses either a crushed stone or asphalt treated

The State of Arkansas Highway and Transportation Department (AHTD) uses either a crushed stone or asphalt treated base course in the construction of its flexible pavements. In general, it is recognized that pavement sections constructed with asphalt treated base courses are cheaper than pavement sections which utilize crushed stone as the base. However, designers are often reluctant to use asphalt treated bases because they fear the thinner pavement sections will not perform as well as the sections designed using crushed stone. Currently only anecdotal evidence exists to support this notion of inferior performance of asphalt treated bases. The purpose of this study was to compare the economic and physical performance of both types of pavement systems under identical, or at least similar, traffic loadings and similar subgrade conditions. A review of the pertinent literature has suggested that asphalt treated bases can successfully replace crushed stone bases, at least in the primary function of providing support for the overlying asphalt surface. It was the intent of this study to verify the performance of the two base course types for the design methods and construction practices encountered in Arkansas.

From a list of over 40 suggested locations only 14 sections of roadway met the criteria to be considered as acceptable companion sections. These 14 sites were geographically dispersed across the State of Arkansas, had sections of both crushed stone and asphalt treated base, were subjected to the same traffic loading and had similar subgrade conditions. Each companion site underwent a thorough field and laboratory investigation to establish layer thicknesses and material properties for both the paving materials and the subgrade soils. The primary pavement distress indicators; rutting, cracking and roughness along with traffic data were extracted from AHTD databases in order to determine current pavement serviceability. Construction documents were also consulted to determine cost of construction and the original design criteria for each companion section. Performance prediction equations were used to establish a target serviceability index for the traffic volumes actually experienced by each section. These target values were then compared to values established from actual field measurements. Initial construction costs and appropriate maintenance and repair costs were used to establish life cycle costs for the pavements systems constructed from each base type.

In many instances, the measured PSI of pavements using a crushed stone base were slightly better than would be predicted by the traffic loading experienced. On the other hand, the PSI for pavements using treated asphalt bases tended to be slightly lower than would be predicted by the traffic loading. It was also noted that pavement sections with crushed stone bases were far more likely to be constructed significantly thicker than the design called for, while treated asphalt sections were very likely to be constructed slightly thinner than specified in the design. While some differences in performance were noted between base course types, the overall conclusion of this study is that properly designed pavement sections using either base material type will perform in accordance with predictions made using the current AASHTO design equations

17. Key Words		18. Distribution S	Statement	
Pavement Performance, Unbound Aggregate Base, Asphalt Treated Base, Life Cycle Cost		No Restrictions		
19. Security Classif. (Of this report) (none)	20. Security Classif (no	. (Of this page) ne)	21. No. of Pages 382	22. Price

Reproduction of completed page authorized

AN ECONOMIC AND PERFORMANCE EVALUATION OF PAVEMENTS CONSTRUCTED WITH CRUSHED STONE OR ASPHALT STABILIZED BASE COURSES

ACKNOWLEDGEMENTS

This project was supported by a research grant from the Arkansas State Highway and transportation Department. The authors wish to thank all of the employees of the Arkansas State Highway and Transportation Department for their excellent support which contributed significantly to the completion of this study.

TABLE OF CONTENTS

DESCRIPTION	PAGE
LIST OF TABLES	ix
LIST OF FIGURES	xvi
CHAPTER 1: INTRODUCTION	1
1.1 PROBLEM STATEMENT	1
1.2 BACKGROUND	2
1.3 OBJECTIVES	4
CHAPTER 2: LITERATURE REVIEW	6
2.1 FLEXIBLE PAVEMENT DESIGN CONSIDERATIONS	6
2.1.1 THICKNESS EQUIVALENCIES	8
2.2 ASPHALT STABILIZED AND CRUSHED STONE	
BASE COURSES ATTRIBUTES	12
2.3 PAVEMENT PERFORMANCE MEASURES	18
2.3.1 CRACKING AND PATCHING	19
2.3.2 ROUGHNESS AND RUTTING	20
2.4 CASE STUDIES	23
2.4.1 AASHO ROAD TEST	24
2.4.2 ORDWAY COLORADO EXPERIMENTAL	
BASE PROJECT	24
2.4.3 RESEARCH BY N.C. STATE'S CENTER FOR	
TRANSPORTATION ENGINEERING STUDIES	27

TABLE OF CONTENTS (CONTINUED)

DESCRIPTION	PAGE
2.4.4 LOUISIANA EXPERIMENTAL BASE PROJECT	. 30
2.5 LIFE-CYCLE COST ANALYSIS	. 33
2.5.1 NET PRESENT WORTH	. 34
2.5.2 EQUIVALENT UNIFORM ANNUAL COST	36
2.5.3 LCCA INPUTS	. 36
2.5.3.1 Analysis Period	. 36
2.5.3.2 Initial Costs	. 37
2.5.3.3 Maintenance Costs	. 38
2.5.3.4 Rehabilitation Costs	38
2.5.3.5 User Costs	. 38
2.5.3.6 Salvage Value	39
2.5.3.7 Discount Rate/Interest Rate	40
2.6 SUMMARY OF LITERATURE REVIEW	40
CHAPTER 3: SITE SELECTION AND EVALUATION	42
3.1 SITE SELECTION	42
3.1.1 HIGHWAY 82	. 45
3.1.2 HIGHWAY 167	. 45
3.1.3 HIGHWAY 15	. 46
3.1.4 HIGHWAY 7 SPUR	. 46
3.1.5 HIGHWAY 79	. 47

TABLE OF CONTENTS (CONTINUED)

DESCRIPTION	PAGE
3.1.6 OTTER CREEK ROAD	47
3.1.7 HIGHWAY 165	47
3.1.8 HIGHWAY 49	48
3.1.9 HIGHWAY 412 (#1-#2)	48
3.1.10 HIGHWAY 270	49
3.1.11 HIGHWAY 65	49
3.1.12 HIGHWAY 71 (#1)	50
3.1.13 HIGHWAY 71 (#10-#13)	50
3.1.14 HIGHWAY 412 (#10-#15)	51
3.2 SAMPLING	51
3.3 LABORATORY TESTING	54
3.1.1 MOISTURE CONTENTS	54
3.4 ROUGHNESS AND RUTTING	58
3.5 STRIPPING	64
3.6 TRAFFIC	66
CHAPTER 4: ECONOMIC ANALYSIS	71
4.1 CONSTRUCTION COSTS	72
4.2 MAINTENANCE AND REHABILITATION COSTS	. 76
4.3 SALVAGE VALUE	80
4.4 ECONOMIC ANALYSIS	81

TABLE OF CONTENTS (CONTINUED)

DESCRIPTION	PAGE
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS	85
5.1 CONCLUSIONS	85
5.2 RECOMMENDATIONS	86
REFERENCES	88
APPENDIX A: NET PRESENT WORTH AND	
EQUIVALENT UNIFORM ANNUAL COST EXAMPLES	91
APPENDIX B: SITE SUMMARIES	96
APPENDIX C: SITES AND SAMPLES	133
APPENDIX D: MOISTURE CONTENTS FROM BAG SAMPLES	159
APPENDIX E: MOISTURE CONTENTS FROM RESILIENT	
MODULUS AND TRIAXIAL SAMPLES	182
APPENDIX F: IRI AND RUTTING DATA	206
APPENDIX G: STRIPPING DATA AND ASPHALT	
CORE PICTURES	232
APPENDIX H: AVERAGE DAILY TRAFFIC DATA	282
APPENDIX I: EXPECTED PSI AND EQUIVALENT SINGLE AXLE LOAD	
CALCULATIONS	302
APPENDIX J: CONSTRUCTION COST AND MAINTENANCE	
COST HISTORIES	329
APPENDIX K: ECONOMIC ANALYSIS	349

LIST OF TABLES

DESCRIPTION	PAGE
Table 2.4.4: Summary of Test Sections at the Louisiana Experimental	
Base Project (after Temple, 1987)	. 31
Table 3.1: Information on the Selected Sites.	. 44
Table 3.3.1 (a): Summary of Moisture Contents in Top of Subgrade	55
Table 3.3.1 (b): Ratios of Moisture Content to Plastic Limit	57
Table 3.4 (a): Summary of IRI Data.	. 59
Table 3.4 (b): Summary of Current Versus Expected Serviceability Indexes	. 61
Table 3.4 (c): Summary of Rut Depth Data	62
Table 3.5: Summary of Stripping in the Asphalt Cores.	. 65
Table 3.6: Summary of ESAL Calculations	69
Table 4.1 (a): Initial Construction Costs.	73
Table 4.1 (b): Initial Construction Costs Adjusted to 1990 Dollars	. 74
Table 4.2: Maintenance Functions.	. 78
Table 4.3: Estimated Salvage Values.	. 81
Table 4.4: Results of Economic Analysis.	. 82
Table C-1: Test Site Information for Highway 82	134
Table C-2: Test Site Information for Highway 167	. 135
Table C-3: Test Site Information for Highway 15	. 137
Table C-4: Test Site Information for Highway 7 Spur.	. 137
Table C-5: Test Site Information for Highway 79	. 138

DESCRIPTION	PAGE
Table C-6: Test Site Information for Otter Creek Road	140
Table C-7: Test Site Information for Highway 165	140
Table C-8: Test Site Information for Highway 49	. 141
Table C-9: Test Site Information for Highway 412 (#1-#2)	. 143
Table C-10: Test Site Information for Highway 270	145
Table C-11: Test Site Information for Highway 65	. 147
Table C-12: Test Site Information for Highway 71 (#1)	152
Table C-13: Test Site Information for Highway 71 (#10-#13)	153
Table C-14: Test Site Information for Highway 412 (#10-#15)	. 155
Table D-1: Summary of Moisture Contents from Bag Samples	. 160
Table D-2:Moisture Contents from Bag Samples for Highway 82	162
Table D-3: Moisture Contents from Bag Samples for Highway 167	163
Table D-4: Moisture Contents from Bag Samples for Highway 15	164
Table D-5: Moisture Contents from Bag Samples for Highway 7 Spur	. 164
Table D-6: Moisture Contents from Bag Samples for Highway 79	165
Table D-7: Moisture Contents from Bag Samples for Otter Creek Road	166
Table D-8: Moisture Contents from Bag Samples for Highway 165	166
Table D-9: Moisture Contents from Bag Samples for Highway 49	166
Table D-10: Moisture Contents from Bag Samples for Highway 270	167
Table D-11: Moisture Contents from Bag Samples for Highway 65	172

DESCRIPTION	PAGE
Table D-12: Moisture Contents from Bag Samples for Highway 71 (#1)	1 74
Table D-13: Moisture Contents from Bag Samples for Highway 71 (#10-#13)	175
Table D-14: Moisture Contents from Bag Samples for Highway 412 (#10-#15)	177
Table E-1: Summary of Moisture Contents from Resilient Modulus and	
Triaxial Samples	183
Table E-2: Moisture Contents from Resilient Modulus and Triaxial Samples	
For Highway 82	185
Table E-3: Moisture Contents from Resilient Modulus and Triaxial Samples	
For Highway 167	188
Table E-4: Moisture Contents from Resilient Modulus and Triaxial Samples	
For Highway 7 Spur	189
Table E-5: Moisture Contents from Resilient Modulus and Triaxial Samples	
For Highway 79	189
Table E-6: Moisture Contents from Resilient Modulus and Triaxial Samples	
For Highway 165	193
Table E-7: Moisture Contents from Resilient Modulus and Triaxial Samples	
For Highway 49	195
Table E-8: Moisture Contents from Resilient Modulus and Triaxial Samples	
For Highway 412 (#1-#2)	202
Table F-1: Highway 82 #1 IRI and Rut Data for the Stone Base Lanes	207

DESCRIPTION	PAGE
Table F-2: Highway 82 #1 IRI and Rut Data for the Full-Depth Lanes	208
Table F-3: Highway 82 #2 IRI and Rut Data for the Stone Base Lanes	209
Table F-4: Highway 82 #2 IRI and Rut Data for the Full-Depth Lanes	210
Table F-5: Highway 79 #1 and #2 IRI and Rut Data for the	
Stone Base Lanes	2 11
Table F-6: Highway 49 #1 IRI and Rut Data for the Full-Depth Lanes	212
Table F-7: Highway 49 #2 IRI and Rut Data for the Full-Depth Lanes	213
Table F-8: Highway 270 #1 IRI and Rut Data for the Stone Base Lanes	214
Table F-9: Highway 270 #2 IRI and Rut Data for the Stone Base Lanes	215
Table F-10: Highway 270 #2 IRI and Rut Data for the Full-Depth Lanes	216
Table F-11: Highway 65 #1 IRI and Rut Data for the Stone Base Lanes	217
Table F-12: Highway 65 #2 and #10 IRI and Rut Data for the	
Stone Base Lanes	218
Table F-13: Highway 65 #2 and #10 IRI and Rut Data for the	
Full-Depth Lanes	219
Table F-14: Highway 65 #11 IRI and Rut Data for the Stone Base Lanes	220
Table F-15: Highway 65 #11 IRI and Rut Data for the Full-Depth Lanes	221
Table F-16: Highway 65 #12 IRI and Rut Data for the Stone Base Lanes	222
Table F-17: Highway 412 #10 IRI and Rut Data for the Stone Base Lanes	223
Table F-18: Highway 412 #11 IRI and Rut Data for the Stone Base Lanes	224

DESCRIPTION	PAGE
Table F-19: Highway 412 #12 IRI and Rut Data for the Stone Base Lanes	225
Table F-20: Highway 412 #12 IRI and Rut Data for the Full-Depth Lanes	226
Table F-21: Highway 412 #13 IRI and Rut Data for the Stone Base Lanes	227
Table F-22: Highway 412 #13 IRI and Rut Data for the Full-Depth Lanes	228
Table F-23: Highway 412 #14 IRI and Rut Data for the Stone Base Lanes	229
Table F-24: Highway 412 #14 IRI and Rut Data for the Full-Depth Lanes	230
Table F-25: Highway 412 #15 IRI and Rut Data for the Stone Base Lanes	231
Table G-1: Stripping Information	233
Table I-1: Expected PSI Based on AASHTO Performance Equations	303
Table I-2: Summary of ESAL's Experienced.	304
Table J-1: Construction Costs for Highway 82 #1 and #2	330
Table J-2: Construction Costs for Highway 79 #1 and #2	331
Table J-3: Construction Costs for Highway 49 #1	332
Table J-4: Construction Costs for Highway 49 #2	333
Table J-5: Construction Costs for Highway 270 #1	334
Table J-6: Construction Costs for Highway 270 #2	335
Table J-7: Construction Costs for Highway 65 #1 and #12	336
Table J-8: Construction Costs for Highway 65 #2, #10, and #11	337
Table J-9: Construction Costs for Highway 412 #10 and #11	338
Table J-10: Construction Costs for Highway 412 #12 and #13	339

DESCRIPTION	PAGE
Table J-11: Construction Costs for Highway 412 #14	340
Table J-12: Maintenance Costs for Highway 82	341
Table J-13: Maintenance Costs for Highway 79	342
Table J-14: Maintenance Costs for Highway 49	343
Table J-15: Maintenance Costs for Highway 270	344
Table J-16: Maintenance Costs for Highway 65.	346
Table J-17: Maintenance Costs for Highway 412 (#10-#15)	348
Table K-1: Economic Analysis for Highway 82 #1	350
Table K-2: Economic Analysis for Highway 82 #2	350
Table K-3: Economic Analysis for Highway 79 #1 and #2	351
Table K-4: Economic Analysis for Highway 49 #1	351
Table K-5: Economic Analysis for Highway 49 #2	352
Table K-6: Economic Analysis for Highway 270 #1	352
Table K-7: Economic Analysis for Highway 270 #2	353
Table K-8: Economic Analysis for Highway 65 #1	354
Table K-9: Economic Analysis for Highway 65 #2 and #10	354
Table K-10: Economic Analysis for Highway 65 #11	355
Table K-11: Economic Analysis for Highway 65 #12	355
Table K-12: Economic Analysis for Highway 412 #10	356
Table K-13: Economic Analysis for Highway 412 #11	356

DESCRIPTION	PAGE
Table K-14: Economic Analysis for Highway 412 #12	357
Table K-15: Economic Analysis for Highway 412 #13	357
Table K-16: Economic Analysis for Highway 412 #14	. 358

LIST OF FIGURES

DESCRIPTION		
Figure 2.1.1 (a): Variation in Layer Coefficient for Granular Bases		
with Base Strength Parameter (AASHTO, 1993)	10	
Figure 2.1.1 (b): Variation in Layer Coefficient for Asphalt-Treated Bases		
with Base Strength Parameter (after AASHTO, 1993)	11	
Figure 2.1.1 (c): Variation in Layer Coefficient for Dense-Graded		
Asphalt Concrete (surface and binder) based on the Elastic		
Modulus (after AASHTO, 1993)	12	
Figure 2.3.2 (a): PSI from AASHO Road Test Equations versus		
log (1+SV) (Hall, 1999)	21	
Figure 2.3.2 (b): Relationship of SV to IRI (Hall, 1999)	21	
Figure 2.5.1: Expenditure Flow Diagram	34	
Figure 3.1: Statewide Map of Arkansas Showing Sampling Locations	43	
Figure 3.2 (a): Asphalt Coring Equipment	52	
Figure 3.2 (b): Drill Rig Used for Sampling	53	
Figure 3.4: Rutting Along Highway 82	64	
Figure 3.6: Results of Sensitivity Analysis	67	
Figure A-1: Expenditure Flow Diagram for Alternative #1	92	
Figure A-2: Expenditure Flow Diagram for Alternative #2	93	
Figure B-1: Columbia County	97	
Figure B-2: Highway 82 #1 Borings	97	

LIST OF FIGURES (CONTINUED)

DESCRIPTION	PAGE
Figure B-3: Highway 82 #2 Borings	97
Figure B-4: Union County (a)	100
Figure B-5: Bradley County	102
Figure B-6: Union County (b)	103
Figure B-7: Calhoun County	104
Figure B-8: Highway 79 #1 Borings	105
Figure B-9: Highway 79 #2 Borings	105
Figure B-10: Pulaski County	1 07
Figure B-11: Lonoke County	108
Figure B-12: Greene County	110
Figure B-13: Highway 49 #1 Borings	111
Figure B-14: Highway 49 #2 Borings	112
Figure B-15: Lawrence County	113
Figure B-16: Garland County	115
Figure B-17: Highway 270 #1 Borings	116
Figure B-18: Highway 270 #2 Borings	116
Figure B-19: Faulkner County	118
Figure B-20: Highway 65 #1 Borings	119
Figure B-21: Highway 65 #2 Borings	119
Figure B-22: Highway 65 #10 Borings	120

LIST OF FIGURES (CONTINUED)

DESCRIPTION		
Figure B-23: Highway 65 #11 Borings	120	
Figure B-24: Highway 65 #12 Borings	121	
Figure B-25: Sebastian County	123	
Figure B-26: Washington County (a)	125	
Figure B-27: Washington County (b)	127	
Figure B-28: Highway 412 #10 Borings	128	
Figure B-29: Highway 412 #11 Borings	128	
Figure B-30: Highway 412 #12 Borings	129	
Figure B-31: Highway 412 #13 Borings	129	
Figure B-32: Highway 412 #14 Borings	129	
Figure B-33: Highway 412 #15 Borings	130	
Figure G-1 (a through h): Highway 82 Asphalt Cores	235	
Figure G-2 (a through h): Highway 79 Asphalt Cores	239	
Figure G-3 (a through j): Highway 49 Asphalt Cores	243	
Figure G-4 (a through o): Highway 270 Asphalt Cores	248	
Figure G-5 (a through aa): Highway 65 Asphalt Cores	255	
Figure G-6 (a through z): Highway 412 (#10-#15) Asphalt Cores	269	
Figure H-1: ADT Data for Highway 82 #1	283	
Figure H-2: ADT Data for Highway 82 #2	284	
Figure H-3: ADT Data for Highway 79 #1	285	

LIST OF FIGURES (CONTINUED)

DESCRIPTION	286
Figure H-4: ADT Data for Highway 79 #2	287
Figure H-5: ADT Data for Highway 49 #1	288
Figure H-6: ADT Data for Highway 49 #2	289
Figure H-7: ADT Data for Highway 270 #1	290
Figure H-8: ADT Data for Highway 270 #2	291
Figure H-9: ADT Data for Highway 65 #1	292
Figure H-10: ADT Data for Highway 65 #2	293
Figure H-11: ADT Data for Highway 65 #10	294
Figure H-12: ADT Data for Highway 65 #11	295
Figure H-13: ADT Data for Highway 65 #12	296
Figure H-14: ADT Data for Highway 412 #10	297
Figure H-15: ADT Data for Highway 412 #11	298
Figure H-16: ADT Data for Highway 412 #12	299
Figure H-17: ADT Data for Highway 412 #13	300
Figure H-18: ADT Data for Highway 412 #14	301
Figure H-19: ADT Data for Highway 412 #15	302

CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

Arkansas currently uses either a crushed stone or an asphalt treated base course in the design of flexible pavements. However, there is currently no formal guidance to determine when the use of one of these materials may be more effective. While initial construction costs is one of the main factors considered in the decision making process, other factors such as material availability and time constraints play a role. The material costs of asphalt treated base are higher compared to that of crushed stone base, but the resulting pavement section using an asphalt stabilized base is considerably thinner. Therefore, the total construction costs, including pavement and shoulder construction, are usually lower when using an asphalt stabilized base.

Since asphalt stabilized base is not always selected for construction, there must be some other criteria or factors considered when selecting the base course material for a flexible pavement. One possible factor is that there may be some question concerning the performance of pavements having an asphalt stabilized base compared to pavements with a crushed stone base. Some believe that pavements with an asphalt stabilized base perform inadequately. Unfortunately, this information is based on only limited examples where inadequate investigation was performed to determine if the poor performance was caused by factors related to the base course, subgrade, or construction techniques. Therefore, research is necessary to determine if the choice of an asphalt stabilized base instead of a crushed stone base affects the performance and life-cycle costs of a pavement.

Design engineers need to have some rational basis or model at their disposal when selecting which material to use as a base course in a flexible pavement design. This research is focused on developing criteria that will aid designers in the selection of a base course material.

1

1.2 BACKGROUND

The three major types of pavements in use today are rigid, flexible, and composite. Rigid pavements are constructed of Portland cement concrete (PCC) with or without a granular subbase course. Flexible pavements consist of an asphalt surface supported by either an unbound granular base course or a stabilized base course. A composite pavement uses both PCC and asphalt. This could mean that it has either a PCC surface supported by an asphalt base course or it is an asphalt overlay of an existing rigid pavement.

Flexible pavements can have either an unbound granular base course or a stabilized base course. The most common type of flexible pavement, often referred to as a conventional flexible pavement, has an asphalt surface (surface course and binder course) supported by an unbound granular base course, typically crushed stone. There may, or may not, be a subbase course consisting of a lower grade material. The other type of flexible pavement uses an asphalt surface (surface course and binder course) supported by a stabilized base course, typically asphalt stabilized. However, it could be stabilized with another material such as cement or lime, although lime is mostly used to stabilize a subgrade, not a granular base course. Full-depth asphalt pavements are a specific case in the category of flexible pavements with a stabilized base course. A full-depth asphalt pavement, conceived by the Asphalt Institute in 1960 (Huang, 1993), is one in which the asphalt surface course is supported by an asphalt binder course, which is placed directly on the prepared subgrade. What separates full-depth from a typical asphalt stabilized base course is that a full-depth pavement is designed so that the entire structure is hot-mix asphalt cement (HMAC). Full-depth pavements utilize an HMAC binder course as its base course, as opposed to an asphalt stabilized material. The binder course has better structural properties than an asphalt stabilized base. Therefore, the addition of an extra thickness of binder can "replace" a thicker section of asphalt stabilized base. Since full-depth pavements use an asphalt binder as their "base course", they fall into the more general category of flexible pavements using an asphalt stabilized base course.

Currently, the Arkansas State Highway and Transportation Department (AHTD) follows the 1993 American Association of State Highway Officials (AASHTO) Guide for the Design of Pavement Structures when designing a pavement structure (AHTD, 1998). When designing a pavement, the Roadway Design Division of AHTD develops three alternatives, two using a crushed stone base course, and one using an asphalt stabilized base course design. Depending on the job (i.e. interstate), one of the crushed stone alternatives may be replaced with a rigid pavement design. An estimator then creates a cost estimate for each alternative based on historical unit costs, job location, material availability, etc. The three alternatives along with their cost estimates are then sent to the Roadway Design Engineer who makes the decision of which alternative to use. This decision takes into account factors such as costs, location, material availability, and recommendations from those involved, such as the Resident Engineer who will oversee the construction of the job. The selected alternative is then sent to the Assistant Chief Engineer for Design for approval. While there does not appear to be a specific standard used to select an alternative, pavements with an asphalt stabilized base course are usually selected for notch and widening jobs (i.e. the removal of a pavement's shoulders and construction of new lanes adjacent to the existing lanes) because of quicker construction time and easier maintenance of traffic. Pavements with a crushed stone base course usually are selected for jobs with a new alignment (Woods, 1999). It is the goal of this research project to develop some guidance in the selection process based on pavement performance and life-cycle cost analyses between Stone Base and asphalt stabilized pavements. This research will be based on pavement sections that have been designed and constructed in the state of Arkansas from the late 1970's to the present.

1.3 OBJECTIVES

The purpose of this research project is to compare the performance and economics of pavements using crushed stone base courses versus pavements using asphalt stabilized base courses. An attempt will be made to develop some criteria to aid in the selection of material for use as a base course in flexible pavement design. As part of this research program, pavement sections considered good companion sections will be sampled and tested. Pavements will be considered companion sections if one section of the pavement was constructed with a crushed stone base, and a corresponding section of the pavement was constructed with an asphalt stabilized base. Both sections should experience more or less the same traffic loading.

In addition to the sampling and testing of companion sections to determine material characteristics, an economic evaluation of their performance will be conducted. For the economic evaluation, a life-cycle cost analysis will be performed. To do a life-cycle cost analysis, it is necessary to

have good cost records for the life of the pavement. Recommendations will be made in regard to record keeping along with procedures for conducting a life-cycle costs analysis.

The second phase of this research, which is not included in this report, will consist of an evaluation of the design procedures available for flexible pavements and the determination of whether or not these pavements are performing as designed.

If there is a deficiency in performance or high life-cycle costs of a pavement section, an attempt will be made to determine if the deficiency was related to the base course material or some other factor such as design or environment. The end result should give designers some guidance for making future decisions concerning whether to use an asphalt stabilized base or a crushed stone base.

CHAPTER 2 LITERATURE REVIEW

The main objective of this project is to develop criteria for deciding when to use an asphalt stabilized base course versus a crushed stone base course in the design of a flexible pavement section. This criteria should primarily involve choosing the material that will provide adequate performance at the lowest cost over the life of the pavement. To develop this criteria, it is important to know the basics of a flexible pavement design procedure and what the advantages and disadvantages of different base course materials are. It is also necessary to discuss the development and use of a life-cycle cost analysis.

2.1 FLEXIBLE PAVEMENT DESIGN CONSIDERATIONS

The AHTD uses the 1993 AASHTO Guide for the Design of Pavement Structures as a basis for their flexible pavement design (AHTD, 1998). The AASHTO procedure was developed based on the results of the AASHO Road Test conducted in Ottowa, Illinois from 1958 to 1960 (Huang, 1993). From the results of this Road Test, a set of empirical performance equations were developed. These equations were then modified to allow their use in areas outside of Illinois. Based on inputs such as traffic (in the form of equivalent single axle loads), reliability, standard deviation, and subgrade resilient modulus, a required structural number (SN) is calculated.

The equivalent single axle load (ESAL) concept was developed to convert a stream of different vehicles (different axle loads and axle configurations) over a certain design period into a comparable number of passes of an 18-kip single axle load. Reliability and standard deviation take into account the variability of traffic estimates and the uncertainties of performance predictions. The use of reliability allows for some level of assurance that the pavement will perform adequately over its design life by establishing a separation between load and performance distributions. Subgrade resilient modulus is a measure of the support provided by the subgrade soil (AASHTO, 1993).

It is necessary to design a pavement cross-section that will provide the required SN. The SN of the pavement cross-section is determined using Equation 1, and is a function of the material properties and thicknesses for each layer in the pavement cross-section.

$SN = a_1D_1 + a_2D_2m_3 + a_3D_3$	D_3m_3 (AASHTO, 1993)	(1)
where	$a_i = layer coefficient$	
	In Arkansas	
	= 0.44 for surface course	
	= 0.36 for asphalt stabilized base course	
	= 0.14 for crushed stone base course	
	$D_i = layer thickness (inches)$	
	$m_i = layer drainage coefficient$	

Inspection of the layer coefficients used in Equation 1 reveals that the use of an asphalt stabilized base course instead of a crushed stone base course can reduce the required base thickness, resulting in an overall thinner pavement section.

2.1.1 THICKNESS EQUIVALENCIES

A comparable way to estimate the value of using an asphalt stabilized base versus a crushed stone base is to look at thickness equivalencies, also referred to as layer equivalencies. The basic concept of a thickness equivalency is to relate how many inches of a "standard material", usually a crushed stone base course, it would take to "equal" one inch of an alternative pavement layer (NAPA, 1987). There has been a lot of work done to develop thickness equivalencies for flexible pavement layers (NAPA, 1987; Majidzadeh, 1976; Terrel, 1968; Lettier, 1964; and Monismith, 1967). The thickness equivalency of a material, such as asphalt stabilized base, can be determined from lab testing or from field testing. One of the most extensive and reliable sources of data for use in thickness equivalency analysis is the AASHO Road Test (NAPA, 1987). According to the Road Test data, hot-mix asphalt (HMAC) surface and binder has an equivalency of 3.14. That is to say, one inch of HMAC provides the same support as 3.14 inches of a dense graded crushed stone base. This equivalency is calculated by dividing the layer coefficient of HIMAC, 0.44, by the layer coefficient of crushed stone, 0.14. Using the same procedure, the thickness equivalency of asphalt stabilized base is calculated as 2.57. Based on that equivalency, asphalt stabilized base provides more than twice the support of a crushed stone base. Assuming crushed stone cost \$12.00/ton and asphalt stabilized base cost \$20.57/ton (AHTD, 1999), to get the same structural support (i.e. 1 inch of asphalt stabilized base or 2.57 inches of crushed stone base) it would cost \$1.20/sq yd for crushed stone or \$1.13/sq yd for asphalt stabilized base. The savings associated with the use of asphalt stabilized base are increased even more as a result of using less material to build up the shoulders due to the thinner pavement section. Although current AHTD procedures do not refer to the use of thickness equivalencies, they, in essence, are using them in the form of the layer coefficients.

When comparing the relative merits of asphalt stabilized base course to a crushed stone base course, it is important to realize the limitations of a specific thickness equivalency, and the resulting layer coefficient. Some of the factors affecting thickness equivalency include; wheel load and contact pressure, stiffness characteristics of the material along with the surrounding materials, layer thicknesses, and subgrade characteristics (Terrel, 1968). Work by Lettier and Metcalf (1964), using elastic layer theory to calculate compressive strains at the top of the subgrade and radial strains at the bottom of the asphalt layer, demonstrated that the layer equivalency of asphalt to crushed stone is dependant on the asphalt thickness and the subgrade stiffness. Their work showed that the equivalency ratio decreases as the subgrade stiffness increases (Lettier, 1964).

Because layer equivalencies are dependent on conditions relating to the overall pavement structure, a single thickness equivalency cannot be assigned to a material (Terrel, 1968). Therefore, the use of a single layer coefficient for a pavement material is one of the downfalls of the empirically based current AASHTO design procedure.

AHTD currently uses layer coefficients of 0.44 for AC (surface and binder), 0.14 for crushed stone base, and 0.36 for asphalt stabilized base (AHTD, 1998). These values are good estimates (AASHTO, 1993), however, they are affected by the properties of the material as it exists within the pavement structure, which may not always be the same. For example, the value of 0.14 used for a crushed stone base course is based on a material with an elastic modulus (E) of 30,000 psi (AASHTO, 1993). An elastic modulus of 30,000 psi is not representative of high quality base material; however, neither is it representative of poor quality material. Therefore, if it is thought that the base material might not be of adequate quality, testing should be done to determine the elastic modulus of the material so that the appropriate layer coefficient, as determined by Equation 2 or Figure 2.1.1 (a), below, will be used in the design of the pavement structure. Equation 2 and Figure 2.1.1 (a) give relationships for estimating the layer coefficient of a granular base course relative to it elastic modulus.

(2)

 $a_2 = 0.249 (\log E) - 0.977$ (AASHTO, 1993)

The AASHTO Design Guide contains a chart, Figure 2.1.1 (b), which estimates the layer coefficient of asphalt treated base course relative to either its Marshal stability or its elastic modulus. The AASHTO Design Guide also contains a chart, Figure 2.1.1 (c), for estimating the layer coefficient of asphalt surface course relative to its Elastic Modulus at 68°F. Equation 2, Figure 2.1.1 (a), Figure 2.1.1 (b), and Figure 2.1.1 (c) were derived from averaging correlations obtained from various states such as Illinois, California, New Mexico, Wyoming, and Texas (AASHTO, 1993). The correlations were developed by

Figure 2.1.1 (a): Variation in Layer Coefficient for Granular Bases with Base Strength Parameter (AASHTO, 1993)

varying conditions and materials and calculating surface deflections, tensile strains on the asphalt, and compressive strains on the subgrade (Van Til, 1972).

Figure 2.1.1 (c): Variation in Layer Coefficient for Dense-Graded Asphalt Concrete (surface and binder) based on the Elastic Modulus (AASHTO, 1993)

2.2 ASPHALT STABILIZED AND CRUSHED STONE BASE

COURSE ATTRIBUTES

According to Huang (1993), the Asphalt Institute, which conceived the idea of full-depth asphalt

pavement, claims the following advantages of using full-depth asphalt pavements:

- 1. The lack of a permeable granular layer minimizes the possibility of entrapping water
- 2. Overall construction time is reduced.
- 3. Traffic flow adjacent to widening jobs can usually be maintained.
- 4. Full-depth pavements are less susceptible to moisture.
- 5. Because full-depth paving uses thicker lifts, which retain heat better, paving seasons can be extended.

 According to limited studies, there is little to no reduction in subgrade strength due to a build up of moisture contents under full-depth pavements unlike pavements with a granular base course.

The most controversial of these statements may be number 6. However, it has been verified by several independent studies (Shook, 1982 and Temple, 1987), which will be discussed later.

Possible reasons why some are skeptical of replacing a crushed stone base with a thinner asphalt stabilized base have to do with questions about whether or not an asphalt stabilized material can perform the "functions" that a crushed stone base performs. Hindermann (1968) describes some of these functions as providing drainage for the water accumulating from the surface and subgrade, cushioning the surface from any movements in the subgrade, and insulating the pavement from the effects of frost. Another function of the base course is to bridge weak areas of the subgrade. This is accomplished from the dissipation of stresses throughout the thickness of the base course layer. Although an asphalt stabilized base course is not as thick as a crushed stone base, it is still effective at reducing the stresses in the top of the subgrade.

One reason that some select a crushed stone base is that they believe that moisture is likely to accumulate in the subgrade immediately beneath a full-depth pavement (Hindermann, 1968). However, based on engineering experience, all of the questions regarding the ability of full-depth to perform the necessary functions are unfounded (Hindermann, 1968). Hindermann (1968) bases this statement on the performance of some long-serving full-depth pavements. The locations and construction dates of some of these pavements are: Omaha, Nebraska, 1889; Visalia, California, 1894; Los Angeles, California, 1905; and Kansas City, Missouri, 1956.

The following list is a summary of some of the major benefits of an asphalt stabilized base course. The subsequent pages will discuss these points further.

- 1. The amount of granular material required is reduced.
- 2. The use of full-depth results in an overall thinner pavement section.
- 3. Construction time is reduced.
- 4. Limited compaction will produce a stiff base course.
- 5. Reduced frost and moisture susceptibility.

In some areas, it is not economical to use large quantities of granular material. If good quality granular material is not readily available in a location near the roadway construction, then transportation costs of the granular material could be extremely high. The use of full-depth would reduce the amount of granular material required. In such areas, it is of major benefit to use full-depth construction.

Pavements with an asphalt stabilized base course have an overall thinner pavement section compared to pavements with a crushed stone base course. This is a major advantage when the construction of a roadway involves existing utilities. If the construction job involves matching an existing elevation, such as a curb and gutter, and there are existing utilities under the pavement, then using a thinner pavement section could allow pavement construction without relocation of the utilities. Whereas the use of a crushed stone base course might cause the pavement to be too thick, resulting in the lowering of existing utilities. I. C. van der Vyver (1989) describes the design and construction of a rehabilitation project for two heavyduty urban pavement sections in which asphalt stabilized base was selected over crushed stone for the reasons just discussed, despite the crushed stone base course being the cheaper alternative. Thinner pavement sections also provide a large reduction in the amount of granular material necessary to build up pavement shoulders, which saves on construction costs.

The use of an asphalt stabilized base course accelerates construction time relative to a crushed stone base course. The Texas State Department of Highways and Public Transportation (TSDHPT) selected full-depth construction when increasing the capacity of Interstate 35 (McGennis, 1982). Interstate 35, north of Austin, Texas, was widened from four to six lanes with a ten-foot shoulder on the inside for a length of 5.7 miles. The main reason for selecting full-depth construction was accelerated construction times which allowed the road to be opened to traffic much sooner. TSDHPT officials estimated that the use of a full-depth pavement provided construction time savings between three to six months over the use of a conventional crushed stone base type pavement. Not only was the entire project completed sooner, but the existing four lanes were allowed to remain open during peak flow times to ease traffic flow. Another example in which an asphalt stabilized base course was selected over crushed stone to accelerate construction was an improvement along Hollywood Boulevard in Los Angeles, California (Pardee, 1972). They were able to excavate the failing asphalt and aggregate base, and lay down the new full-depth pavement with minimum interruption to the daily traffic user and local businesses.

12

Another benefit of using an asphalt stabilized base course is that limited compaction will produce a stiff base course. For a crushed stone base course to develop high stiffness, it must be compacted to high densities. During the construction process, it could be difficult to obtain high densities on the first layer of an untreated, granular base if the subgrade is soft. A stiff base course is needed to provide support and minimize rutting. Given current compaction procedures (i.e. vibratory and static steel wheel rolling), which apparently are more successful on asphalt stabilized material than unbound material, pavements with a treated base course show less rutting than pavements with an untreated base course (NAPA, 1987). It should be noted that this statement was taken from the National Asphalt Pavement Association, which may have a bias toward material containing asphalt.

The question of whether or not an asphalt stabilized base course will perform adequately relative to a crushed stone base course is answered by how well the asphalt stabilized base course performs the functions required in a flexible pavement, namely, to provide structural support for the surface course (AASHTO, 1993). According to Leykauf, theoretical studies have shown that an asphalt stabilized base can satisfactorily substitute for a crushed stone base relative to bearing capacity, insulating the subgrade from frost penetration, and providing adequate drainage (Leykauf, 1972).

An advantage of using an asphalt stabilized base relative to performance issues is reduced frost susceptibility. The main reason that crushed stone base courses are frost susceptible is that enough fines have to be present in the granular material so that the base course can be compacted and shaped (NAPA, 1987). If the base course contains too many fines it will be frost susceptible because of capillary rise of moisture into the base course. This would cause problems in the spring-thaw period when frost-susceptible materials loose strength. However, most materials that qualify for use in a base course in the State of Arkansas are not frost susceptible.

According to Vyver (1989), pavements using an asphalt stabilized base are far less susceptible to damage from moisture than pavements using a crushed stone base. An increase in moisture reduces the stiffness of an aggregate base course (Khosla, 1996). This loss of stiffness and strength results in a reduction in shear strength leading to significant pavement distress (Yoder, 1975). During the spring, when moisture contents are the highest, asphalt stabilized base courses maintain their stiffness and strength better than crushed stone base courses. The moisture susceptibility of granular material results in the deflections

13

of Stone Base pavements being a function of seasonal changes in moisture content. On the other hand, Shook (1982) states that seasonal variations in deflection for full-depth sections are related to temperature changes, rather than moisture or frost. That is, full-depth pavements loose strength and deflect as a result of asphalt softening due to temperature increases, while Stone Base pavements loose strength and deflect due to increases in moisture.

The use of crushed stone as a base course does have some advantages. The first is lower material cost relative to an asphalt stabilized material. Another advantage is that the construction process when installing a crushed stone base is less complicated. The placement of hot-mix asphalt requires a lay-down machine with skilled operators, multiple dump trucks with drivers, a vibratory compactor, and a finish roller. The only equipment necessary for the placement of crushed stone also allows multiple chances to unload the material, and a vibratory compactor. The use of crushed stone also allows multiple chances to get the final grade desired. It is also believed that the thicker base course helps to "bridge" soft spots in the subgrade by dissipating stresses before they reach the subgrade. Unlike asphaltic material, crushed stone material does not have to be hot to be placed and compacted. Therefore, construction seasons are extended. Another benefit of crushed stone is that contractors get multiple chances to achieve a good density. On the other hand, once the asphalt stabilized base is laid down, it begins to cool off, which limits the amount of time a contractor has for compaction. If they don't get the asphalt stabilized base course compacted on the first try it is too late.

2.3 PAVEMENT PERFORMANCE MEASURES

The performance of pavements are judged by their Present Serviceability Index (PSI). At the AASHO Road Test, the new flexible pavements had an average PSI of 4.2, where 5.0 is the PSI for a perfectly smooth pavement (Huang, 1993). A PSI of 1.5 is defined as the terminal PSI. Most flexible pavements are designed so that their useful lives end at a PSI of 2.5 (AHTD, 1998). For flexible pavements, factors such as cracking, patching, roughness, and rutting are measured and converted into the PSI for the pavement section using Equation 3.

(3)

where: SV = Slope Variance, $10^6 x$ population variance of slopes

measured at 1-ft intervals

RD = Rut Depth, inches

C = Cracking, linear feet per 1,000 ft²

P = Patching, square feet per 1,000 ft²

2.3.1 CRACKING AND PATCHING

Cracking of an asphalt pavement is typically the result of either fatigue failure under repeated traffic loading or shrinkage of the hot mix asphalt from daily temperature cycling (Huang, 1993). There are three levels of severity for defining cracking; class I, class II, and class III. Class I fatigue cracks consist of fine disconnected hairline cracks (HRB, 1962). Class I cracking is not considered when determining serviceability, only when the cracks develop into class II or III are they considered severe enough to be included. Class II cracking is commonly referred to as alligator cracking. Class III cracking occurs when the distress is serious enough to cause the fragments of pavement to rock under traffic. Patching is used to repair small areas of the pavement that have significant distress, such as cracking. Both of these factors are included in Equation 3. However, they are not easily obtainable on a large scale due to the tedious task of measuring and recording the data and usually do not have a significant impact on PSI. Therefore, most state agencies simply convert roughness into PSI (Huang, 1993)

2.3.2 ROUGHNESS AND RUTTING

Roughness is measured as the variation from grade, in meters per kilometer (inches per mile), along the longitudinal surface profile and is termed the International Roughness Index (IRI). IRI data is obtained by use of a mechanical profilometer. AHTD does not currently convert IRI to PSI. They use IRI measurements as an indicator of how rough the pavement is. Based on the FHWA's *Highway Statistics 1994*, a pavement's condition can be evaluated based on the following range in IRI values. An IRI less than 0.95 m/km (60 in/mi) indicates very good pavement condition, 0.95 to 1.48 m/km (60 to 94 in/mi) is good, 1.50 to 1.88 m/km (95 to 119 in/mi) is fair, 1.89 to 2.69 m/km (120 to 170 in/mi) is mediocre, and greater than 2.68 m/km (170 in/mi) is poor (FHWA, 1995). It should be noted that these ranges in IRI should only be used as an indicator of pavement serviceability and should not form the basis for a final decision on how a pavement is performing.

Since it was found that roughness had the greatest impact on PSI, Hall (1999) developed equations to directly relate pavement roughness, as measured by IRI, to pavement serviceability, as measured by PSI. To develop this relationship, an equation was created based on the correlation between the slope variance (SV) of the pavement to PSI based on the results of the AASHO Road Test, as shown in Figure 2.3.2 (a). An equation was also developed relating SV to IRI, as shown in Figure 2.3.2 (b).

Figure 2.3.2 (a): PSI from AASHO Road Test Equations versus log (1+SV) (Hall, 1999)

Figure 2.3.2 (b): Relationship of SV to IRI (Hall, 1999)

The two equations developed in Figures 2.3.2 (a) and (b) were combined to form Equation 4, which directly correlates IRI to PSI. It should be noted that Equation 4 is only applicable to asphalt pavements. However, Hall (1999) developed similar relationships for concrete pavements.

$$PSI=5-0.2937x^{4}+1.1771x^{3}-1.4045x^{2}-1.5803x \quad (Hall, 1999)$$
(4)
where: $x = log(1+2.2704(IRI)^{2})$, IRI in m/km
 $(1 \text{ m/km} = 63.36 \text{ in/mile})$

However, Equation 4 should not be used when the IRI is outside the range of 0.5 to 5.0 m/km (31.7 to 317 in/mi) or the PSI is outside the range of 4.5 to 1.0 because of the lack of AASHO Road Test data on which to extrapolate.

Equation 4 determines how a pavement is currently performing based on roughness. To determine if the pavement is performing as it should, a comparison can be made to the expected PSI as calculated from the AASHTO Performance Equations as determined from the AASHO Road Test (AASHTO, 1993).

$$\log W = \log \rho + \frac{\frac{\log(p_i - p)}{(p_i - 1.5)}}{\beta}$$
(5)

where:

$$\log \rho = 5.93 + 9.36 \log(SN+1) + 4.33 \log(L2) - 4.79 \log(L1+L2)$$
(6)

$$\beta = 0.4 + \frac{0.081(L_1 + L_2)^{3.23}}{(SN+1)^{5.19}L_2^{3.23}}$$
(7)

SN = Structural Number $L_1 = Axle Load in kips$ $L_2 = 1$ for single axle and 2 for tandem axle

Hall's equations (Hall, 1999) only considers roughness when determining PSI. However, a pavement could have a low IRI, indicating a smooth, well-performing pavement, and still have a consistent three-inch rut, indicating poor performance. Rutting can be accounted for by first using the equation in Figure 2.3.2 (b) to convert IRI into SV, and then using Equation 3 to determine PSI. However, when comparing the rutting between pavements with different base courses, an attempt should be made to only consider structural rutting, not rutting that occurs within the asphalt mix. Since cracking and patching have a low impact on PSI, they can be ignored when using this method.

2.4 CASE STUDIES

The following sections discuss some of the full-scale pavement tests that have addressed issues related to the use of various base course materials in flexible pavements. The full-scale experiments

discussed include; the AASHO Road Test, the Ordway Colorado Experimental Base Project, research by the North Carolina Department of Transportation, and the Louisiana Experimental Base Project.

2.4.1 AASHO ROAD TEST

The specific purpose of the AASHO Road Test was not to compare pavements with an asphalt stabilized base course to pavements with a crushed stone base course. There was, however, work done on a special base experiment as part of the AASHO Road Test. This experiment compared four different types of base course materials; crushed stone, well-graded uncrushed gravel, cement-treated, and asphalt-treated (Benkelman, 1962). Performance measures, such as rut depth, were analyzed graphically to allow a comparison of performance for pavements consisting of the four types of base courses. For example, given a 76.2 mm (3 inch) surface, a 101.6 mm (4 inch) subbase, and 1,000,000 applications of an 18-kip single axle load, it was found that to maintain a Present Serviceability Index (PSI) of 2.5 it would require either 330.2 mm (13 inches) of a crushed stone base, 203.2 mm (8 inches) of a cement-treated base, or 152.4 mm (6 inches) of an asphalt-treated base (Benkelman, 1962). Based on this experiment, along with further analysis of the data obtained from the Road Test, the superiority of the different base courses were ranked as follows: (1) asphalt treated, (2) cement treated, (3) crushed stone, (4) gravel bases (Huang, 1993).

2.4.2 ORDWAY COLORADO EXPERIMENTAL BASE PROJECT

The Ordway Colorado Experimental Base Project was a full-scale field experiment which was opened to traffic in 1965 (Shook, 1982). The purpose of the project was to compare pavements consisting of various base courses, namely, full-depth hot-mix sand asphalt, full-depth asphalt concrete, and untreated material. The last measurements taken as part of this experiment were in September 1978. There were 20 different test sections studied as part of this research project. Of these 20, 7 were full-depth sections with base course thicknesses of 140, 178, and 216 mm (5.5, 7.0, and 8.5 inches). Four sections were Stone Base pavements with a base course thickness of 178 mm (7.0 inches) of untreated, granular base. The other 9 sections were full-depth pavements with either a low or high stability sand asphalt base course. All of the pavement sections had a uniform asphalt surface course 50 mm (2.0 inches) thick.

Ordway is located in southeast Colorado in the high plains where most of the soil is silty and frost susceptible. There were 2 soils used as subgrade material an A-7-6 (AASHTO Classification System) with a California Bearing Ratio (CBR) of 2.6 and an A-6 with a CBR of 3.4. The test sections were randomly placed between the two subgrade soils.

Several conclusions were drawn from the Ordway Colorado Experimental Base Project:

- Pavements using an asphalt concrete base course showed the best resistance to rutting and all forms of cracking.
- 2. Fatigue or load-associated cracking, also referred to as alligator cracking, was much more prevalent in the untreated base course pavement section. Two percent of the full-depth pavement was found to have alligator cracking. In contrast, 30 percent of the Stone Base pavement was identified as having alligator cracking.
- After twenty years in service, no appreciable difference can be found between the performance of the full-depth pavements and the stone base pavements. Present Serviceability Index values of between 1.6 and 1.9 were calculated for both pavement types.
- Transverse cracking was much more prevalent in the full-depth pavement. Seventy percent of the full-depth pavement had transverse cracking. Thirty-eight percent of the stone base pavement had transverse cracking.
- Longitudinal cracking was similar in both pavement sections. Both pavements had approximately 30 percent longitudinal cracks.
- 6. Deflection data was similar for both pavement sections.
- 7. Moisture contents in the subgrade were higher under the stone base pavement sections.

Based on a comparative analysis using the rut-depth and deflection measurements, the average layer coefficients for the asphalt concrete base and the untreated base at this project were 0.34 and 0.16, respectively. These coefficients were determined by first assuming that the coefficient for the asphalt treated base was 0.34. The coefficient for the untreated base was then determined to be 0.16 by dividing 0.34 by the average ratio of rut depth measurements and deflection measurements of the full-depth pavements to the stone base pavements. The determined coefficients from this research, which was concluded in 1978, were 0.34 and 0.16. By comparison, AHTD uses 0.36 and 0.14 (AHTD, 1998).

2.4.3 RESEARCH BY N.C. STATE'S CENTER FOR TRANSPORTATION ENGINEERING STUDIES

Khosla, et al (1996), discusses research funded by the North Carolina Department of Transportation (NCDOT) and conducted by the North Carolina State University's Center for Transportation Engineering Studies to compare the performance of different flexible pavement designs.

Twelve flexible pavement cross sections were studied in twenty-four separate locations along an approximately 12.1 km (7.5 mile) long portion of US 421 Bypass near Siler City, North Carolina. The test sections were constructed in the Fall of 1989 and the Spring and Summer of 1990. Pavement cross sections were all composed of a top course of 50.8 mm (2.0 inches) of asphalt surface. The sub-structure of the test sections consisted of one or more of the following materials: asphalt binder course, asphalt stabilized base course, granular base course, cement-treated base course, cement stabilized subbase, and/or lime stabilized subbase.

To analyze the design aspects and performance of the different pavement cross sections, moisture contents were recorded throughout the subgrade and temperature data was recorded for the subgrade and at different locations in the pavement structure. Pressure gauges were placed at the subgrade-base course interface and strain gauges were placed at the asphalt-base course interface. In pavement sections that were composed of stabilized subgrade material, the pressure gauges were placed below the stabilized layer. For pavement sections composed of several asphalt layers, the strain sensor was placed below the bottom asphalt layer.

Additionally, a multi-depth deflectometer, which is a linear variable differential transformer based instrument, was used to measure deflections at specific depths in the pavement section. Traffic measurements were made using weigh-in-motion devices. A

study of the materials to be used in the test section - including resilient modulus tests of the subgrade, base, and asphalt types - was also included in the study.

As part of their research, a falling weight deflectometer (FWD) was used to obtain deflection measurements. The FWD creates a deflection in the pavement by dropping a weight onto a loading plate, 300 mm (11.8 inches) in diameter, which rests on the pavement surface. A load cell is used to measure the applied load. Deflection measurements are made using velocity transducers spaced at various distances away from the loading plate. The impact of the FWD creates a deflection basin in the pavement section. Based on the deflections at two sensors, one directly under the load and one at some distance away, a Surface Curvature Index (SCI) is calculated to describe the curvature of the deflection basin.

High SCI values mean that the pavement does not deflect significantly away from the applied load, indicating a stiff, well-performing pavement. From analyses made during the NCDOT research project, pavements with an aggregate base course showed higher SCI values when compared to full-depth pavements.

Based on predicted responses calculated using WES-5, a program based on multilayered elastic theory, the following generalizations were presented:

- 1. Stresses at the top of the subgrade were generally greater than predicted for the aggregate base course sections and were significantly less than predicted for the full-depth asphalt sections.
- 2. In this study, based on actual stresses at the top of the subgrade, it appears that 101.6 mm (4.0 inches) of an asphalt stabilized base is equivalent to 203.2 mm (8.0 inches) of an aggregate base course. Also, 139.7 mm (5.5 inches) of an asphalt stabilized base course is approximately equivalent to 304.8 mm (12.0 inches) of an aggregate base course. This gives thickness equivalencies of asphalt concrete base as 2.00 and 2.18, compared to an equivalency of 2.57 as determined by the AASHO Road Test.
- 3. Pavement distress surveys of the pavement sections consistently rated the sections with asphalt treated base course better than sections with aggregate treated base course.
- 4. Fatigue cracking and rutting were more common/greater in the aggregate base course sections than they were in the asphalt stabilized base sections for the pavement sections with 101.6

mm (4.0 inches) of asphalt treated base course and 203.2 mm (8.0 inches) of aggregate base course, respectively. The data on longitudinal cracking was inconclusive for a comparison of these pavement sections.

5. Longitudinal cracking and fatigue cracking was more common in the aggregate base course sections than they were in the asphalt stabilized base sections for the pavement sections with 139.7 mm (5.5 inches) of asphalt treated base course and 304.8 mm (12.0 inches) of aggregate base course, respectively. Rutting was slightly less in the asphalt treated base course section.

2.4.4 LOUISIANA EXPERIMENTAL BASE PROJECT

The Louisiana Experimental Base Project consisted of the design and construction of eighteen full-scale flexible pavement test sections (Temple, 1987). The fourteen test sections and four control sections along U.S. Route 71 and U.S. Route 167 in central Louisiana were opened to traffic in August of 1976. The location of the project was between the low wetlands of south Louisiana and the slight hills in the northern part of Louisiana, providing a flat terrain with poor drainage.

The test sections were designed with various design lives (5, 10, and 15 years) and constructed with various base course materials (soil cement, stabilized sand clay gravel, and asphalt stabilized). The base course thicknesses ranged from 76.2 to 508 mm (3 to 20 inches), and surface thicknesses ranged from 88.9 to 139.7 mm (3.5 and 5.5 inches). The control sections consisted of 139.7 mm (5.5 inches) of surface course, 190.5 mm (7.5 inches) of asphalt stabilized base course, and 152.4 mm (6 inches) of soil-cement stabilized subbase. From 1976 through June of 1985, the sections used in this research project were subjected to 1.66 million ESAL's. Table 2.4.4 shows a summary of the fourteen test sections. While this project provides no direct comparison between full-depth pavements and pavements with a crushed stone base, it does provide some information about the performance of full-depth pavements.

Table 2.4.4: Summary of Test Sections at the Louisiana Experimental

Base Project (after Temple, 1987)

		Layer Thic	knesses (mm)		
Section #	Design Life (Years)	AC	Asphalt Stabilized Base	Soil-Cement Stabilized Base	Cement Stabilized Sand Clay Gravel
T-1	15	139.7	203.2		
T-2	10	139.7		228.6	
T-3	15	88.9	279.4		
T-4	15	88.9		508.0	
T-5	10	88.9	190.5		
T-6	15	139.7		406.4	
T-7	10	139.7	114.3		
T-8	10	88.9		381.0	
Т-9	5	139.7		152.4	
T-10	5	88.9		304.8	
T-11	5	139.7	76.2		
T-12	5	139.7			152.4
T-13	5	88.9			254.0
T-14	5	88.9	152.4		

Note: 1 inch = 25.4 mm

Field data was collected at six-month intervals between 1976 and 1985. A weigh-in-motion detector made a detailed description of traffic during the course of the study. Falling Weight Deflectometer (FWD) measurements were made at 30.48-m (100-ft) intervals to characterize seasonal changes in

deflection levels. Visual surveys were also made to note the occurrence of rutting and cracking in the pavement sections.

The sections with an asphalt stabilized base developed class I fatigue cracks over their entire lengths within seven years of construction. These fatigue cracks were confined to the wearing course and binder course, and were not found in the asphalt stabilized base course. This is contrary to the assumptions of elastic-layer theory, which states that fatigue cracks start at the bottom of the asphalt layer and work their way to the surface. One possible explanation is that stripping in the asphalt was the cause of the fatigue cracking. Stripping was detected in asphalt cores taken from the wheelpaths at the same location where the fatigue cracking occurred. Stripping was most likely confined to the wearing and binder course, and not in the asphalt stabilized material, because the aggregate used in the wearing and binder course was produced at a different plant than the remainder of the project. Stripping was also found in cores taken outside of the wheelpath at the same depth as stripping in the wheelpath, indicating that stripping most likely occurred before the fatigue cracking (Temple, 1987). Cores from test sections T-11 and T-14, both full-depth sections, showed no signs of stripping. These two test section generally performed better than the other full-depth sections. Test sections T-11 and T-14 showed no class II cracking and less rutting than the other full-depth sections, despite having thinner sections (and resulting lower structural numbers). The conclusion is that the elimination of stripping from the pavement section will have a greater impact on increased performance than increasing the pavement's structural capacity (Temple, 1987).

Observations of the test sections also showed that the full-depth pavements supported by a stiff, cement stabilized subbase (i.e. the control sections) showed less rutting than the full-depth pavements supported by an unstabilized subbase. The support provided by the subgrade is important, especially when protecting the pavement against distress, such as rutting. If the subgrade is weak, i.e. low shear strength, then under repeated loading the subgrade will compress and displace laterally, causing ruts to develop in the pavement structure. In addition to this study, Hopkins et al. (1994) also showed that the use of hydrated lime or cement increases the shear strength of certain soils and improves the bearing capacity of the pavement structure.

2.5 LIFE-CYCLE COST ANALYSIS

When selecting a pavement design from several alternatives, it is important to look at factors other than initial construction costs. While selecting the alternative with the lowest initial costs might appear to be advantageous, one of the more expensive initial designs might perform better, which would result in lower future costs, namely maintenance and rehabilitation costs. To select the most economic pavement alternative, it is important to compare all of the costs associated with each alternative over the life of the pavement. Such a process is referred to as a life-cycle costs analysis (LCCA). It is important to note that an LCCA should only be one of several factors used to make a decision on which alternative to select (AASHTO, 1993). Other factors, such as past performance of pavement should also be considered. An LCCA comparing several design alternatives will identify the alternative that will provide the best value, that is, the pavement that will adequately perform the necessary function for the lowest long-term cost (Walls, 1998).

When comparing design alternatives using an LCCA, it is only necessary to evaluate the costs that are unique to that design alternative. The costs that are common to every design alternative will cancel out and have no bearing on which alternative results in a lower life-cycle cost. An example of a cost that is common to all alternatives is design costs (Peterson, 1985). These costs include; site investigations, pavement design, plans, and specifications. Normally, the difference in design costs between alternatives is insignificant and therefore not included in an LCCA.

2.5.1 NET PRESENT WORTH

Net Present Worth (NPW) is the most accepted method for conducting an LCCA (Walls, 1998). Basically, the NPW method takes all costs and benefits associated with an alternative and calculates the equivalent worth of the alternative in the form of one cost at the present time. Using the NPW method, future costs and benefits are discounted to the present time by use of a discount rate. Once all of the costs are converted to present time, they are summed to determine the NPW. A useful tool when doing the NPW method, or any other analysis method, is to draw an expenditure flow diagram, as shown in Figure 2.5.1, which depicts each cost and the year in which occurs.

Figure 2.5.1: Expenditure Flow Diagram

This visualization helps determine at what time period each cost, or benefit, occurs. Costs are usually drawn pointing upward (positive) and benefits are drawn pointing downward (negative). All of the periodic costs and benefits that occur in the future are discounted to their present value by multiplying them by their present worth factor:

$$pwf_{i,n} = \frac{1}{(1+i)^n}$$
 (AASHTO, 1993) (8)

where: $pwf_{i,n} = present$ worth factor for a particular i and n

i = discount rate

n = number of years to when the cost occurs

Annual costs are converted to their present value by multiplying by the inverse of their critical recovery factor, which is defined by Equation 9.

$$\operatorname{crf}_{i,n} = \frac{i(1+i)^n}{(1+i)^n - 1}$$
 (AASHTO, 1993) (9)

where: $crf_{i,n} = critical$ recovery factor for interest rate i and n years

Tables are also available to find the present worth factor, given a discount rate and number of years (Newnan, 1996). The NPW of a design alternative is then calculated as the sum of each cost, or benefit, multiplied by its present worth factor. Appendix A contains an example of a Net Present Worth Analysis.

2.5.2 EQUIVALENT UNIFORM ANNUAL COST

Another way to compare design alternatives in an LCCA is to calculate the Equivalent Uniform Annual Costs (EUAC) of each alternative. The EUAC method takes each cost of the alternative and spreads it out into equal payments over the analysis period. The EUAC of an alternative is calculated by summing all of the periodic costs that have been converted to annual costs. Converting a periodic cost to an annual cost is done by first converting a cost to its present worth, using Equation 8, and then multiplying the cost by its critical recovery factor, as determined by Equation 9. Appendix A contains an example of an Equivalent Uniform Annual Cost Analysis.

2.5.3 LCCA INPUTS

There are many factors that are involved in an LCCA. Some of these factors include the analysis period, construction costs, maintenance costs, user costs, salvage value, and discount/interest rates. Each factor will be discussed individually in the following sections.

2.5.3.1 Analysis Period

The analysis period is the time over which all initial and future costs associated with the alternative are to be evaluated (AASHTO, 1993). In general, the analysis period should always be longer than the design life to take into account at least one rehabilitation project. According to the Federal

Highway Administration's (FHWA) Final Policy Statement in September 1996, the analysis period for all pavement projects should be at least 35 years (Walls, 1998). When comparing several alternatives, an equal design life should be used for all alternatives, even if their design lives are different.

2.5.3.2 Initial Costs

The main factor affecting the initial costs of a design alternative is construction costs. It is usually assumed that the initial agency costs associated with the design process are equal for all alternatives and therefore have no impact on an LCCA (Walls, 1998). Construction costs associated with the design alternatives are relatively easy to obtain. They are simply a function of the pavement layer thicknesses along with the shoulder thickness and drainage system materials, current unit costs of the materials, and the length of the pavement in the project (AASHTO, 1993). Another factor affecting initial construction costs is related to the pavement geometry. A pavement with more travelling lanes, i.e. a wider paved surface, will cost more than the same pavement structure with fewer travelling lanes. Therefore, care should be taken so that all alternatives are judged on an equal basis. One way this can be accomplished is by comparing costs on a per lane-mile basis.

Based on a sensitivity analysis by Zimmerman (1997), initial costs have the greatest impact on the results of an LCCA. However, this might not be the case if the discount/interest rate used is extremely high. Zimmerman's sensitivity analysis was conducted by assuming some baseline for the inputs into an LCCA. Each input was then varied, in turn, while keeping all other inputs constant. For each variation the NPW was calculated. The change in NPW versus the change in each input was compared to see how much of an affect each input had on the outcome of the LCCA.

2.5.3.3 Maintenance Costs

Maintenance costs include all costs associated with keeping the pavement section at a desirable level of service (AASHTO, 1993). Maintenance costs should include the costs of routine maintenance to the pavement, shoulders, and drainage systems. Pavement rehabilitation costs should not be included. Routine maintenance entails such things as repairing potholes, patches, and thin overlays over a short distance. Other maintenance costs such as snow and ice removal do not need to be considered since they are not differentiable between pavement design alternatives. A sensitivity analysis conducted by Zimmerman (1997) determined that maintenance costs do not have a significant impact on the results of an LCCA. Walls and Smith (1998) also found that routine maintenance costs are generally small and have a negligible effect on a Net Present Worth analysis.

2.5.3.4 Rehabilitation Costs

Pavement rehabilitation costs are associated with work performed that increases the service life of the pavement, such as resurfacing over a substantial length. These costs are periodic (possibly occurring 2 or 3 times over a 35 year analysis period) and most likely occur from the middle to the end of the analysis period (Peterson, 1985).

2.5.3.5 User Costs

User costs are any cost incurred by the user of the pavement and involve travel time, vehicle operating costs, and accident costs (Walls, 1998). User costs are a function of the roughness, and resulting serviceability of the pavement. Under normal operating conditions, these costs are hard to differentiate among various alternatives so user costs in an LCCA are normally associated with work zone user costs. Work zone user costs are those costs associated with travel delays, vehicle operating costs, and accident costs as a direct result of a maintenance project on a highway. Work has been done (Walls, 1998; Uddin, 1985) to develop methodologies and procedures for obtaining user cost estimates. This work involved the development of computer programs to calculate user costs based on factors such as project traffic demand, directional hourly demand through the work zone, roadway capacity, queue dissipation rates, work zone capacity, user costs components, reduced speed delay, queue speed, queue lengths, and vehicle operating costs.

2.5.3.6 Salvage Value

A salvage value is used to represent the remaining serviceable life of a pavement at the end of the analysis period (Zimmerman, 1997). This is an important cost to consider when a major rehabilitation

occurs at the end of the analysis period and the full value of the rehabilitation costs has not been accounted for. If a salvage value is not used to represent the pavement life that exceeds the analysis period (resulting from a rehabilitation), then the effect on an LCCA would be to increase the overall cost of the alternative, making it appear as if the alternative is not as economical as it actually is. If it is estimated that a major rehabilitation will occur toward the end of the analysis period, a salvage value, based on the remaining serviceable life, should be used in an LCCA. One possible way of determining the salvage value of the pavement is to determine what percentage of serviceable life is remaining at the end of the analysis period, based on either PSI or design ESAL's. The salvage value can then be assumed to be equal to that percentage of the cost of the rehabilitation project.

2.5.3.7 Discount Rate/Interest Rate

Discount rates and interest rates are used to transform costs occurring at different times in the analysis period to a specific time, usually to the beginning of the analysis period (Walls, 1998). It is important to distinguish between real and nominal discount rates. Real discount rates reflect the true time value of money with no inflation and nominal discount rates include inflation. Regardless of which discount rate is used, it is necessary to use real or nominal dollars, corresponding to the selected discount rate. The FHWA recommends the use of real discount rates, eliminating the need to estimate inflation (Walls, 1998). Because the discount rate has a significant influence in an LCCA, its selection should be based on historical trends over long periods of time. Analysis of such historical data, such as treasury bills or interest rates, suggest that approximately 4 percent is an adequate discount rate to use in an LCCA (Walls, 1998).

2.6 SUMMARY OF LITERATURE REVIEW

There were several important points made during the review of pertinent literature. The following is a brief summary of those points.

- Current flexible pavement design procedures take into account the better structural properties
 of asphalt stabilized base material relative to crushed stone resulting in thinner pavement
 structures when using full-depth construction.
- 2. It has been shown that asphalt stabilized material can successfully replace crushed stone as a base course relative to the main function of a base course, namely, providing support for the asphalt surface.
- The main advantages of using full-depth asphalt construction instead of a conventional stone base pavement structure involve quicker construction times, and better maintenance of traffic during construction.
- 4. Multiple experimental projects have shown that pavements with an asphalt stabilized base course have performed as well as, or better, than the stone base pavements.
- 5. A Life-Cycle Cost Analysis is an excellent way to determine which of several alternatives will be the most economical over the life of the pavement.
- The two most likely LCCA procedures are a Net Present Worth analysis and a Uniform Equivalent Annual Cost analysis.

CHAPTER 3

SITE SELECTION AND EVALUATION

3.1 SITE SELECTION

The site selection process began with the identification of highways throughout the state of Arkansas that might qualify as good companion sections. For the purpose of this study, highways would qualify as good companion sections if they meet the following criteria; more or less the same traffic travels over both a conventional stone base pavement section and a full-depth asphalt pavement section. An example of a good companion section would be a highway that was widened from two to four lanes over a length of a few miles using a pavement section with a crushed stone base; then, within a few years, the widened section was extended several miles using full-depth asphalt construction. This would create a situation were the outside lanes of traffic would transition from traveling on a stone base pavement section to a full-depth pavement section. Another situation providing good companion sections would occur when an existing route consisting of a stone base pavement section was either relocated or realigned (such as a curvy section being straightened) using a full-depth pavement section.

After consulting with AHTD personnel in the Research and Roadway Design Departments along with some Resident Engineers, multiple locations were suggested as companion sections. AHTD construction job numbers were determined by using Route/Section/Log Mile books. Using these job numbers, construction plans were reviewed to verify whether or not the site should be sampled. Over half of the approximately 40 suggested locations failed to meet the companion criteria. The remaining 14 sites that appeared to qualify were investigated over the spring and summer of 1999. At these fourteen sites, there were a total of thirty-three locations investigated (i.e. some sites were investigated in multiple locations).

Figure 3.1 illustrates the geographic dispersion of the sites throughout the state. Each dot represents a sampling location.

Figure 3.1: Statewide Map of Arkansas Showing Sampling Locations

During the sampling process, the actual cross-section of each pavement was determined. In some cases, the pavement that was sampled was different than the pavement section reflected on the construction plans. Most of these cases were a result of an older concrete pavement being located under the existing asphalt pavement. All of the sections that had either a concrete pavement below the asphalt pavement, or lacked a good comparison section of a different base course material, were rejected. Of the fourteen sites sampled, only six were determined to qualify under the selection criteria and included in the study. Table 3.1 contains location information for the sites selected as good companion sections.

Table 3.1: Information on the Selected Sites

Location	County	Route	Section	Log Mile
Hwy 82 #1	Columbia	82	4	11.03
Hwy 82 #2	Columbia	82	4	8.34
Hwy 79 #1	Calhoun	79	5	5.64
Hwy 79 #2	Calhoun	79	5	5.64
Hwy 49 #1	Greene	49	2	23.51
Hwy 49 #2	Greene	49	2	20.21
Hwy 270 #1	Garland	270	6	8.60
Hwy 270 #2	Garland	270	6	6.47
Hwy 65 #1	Faulkner	65	9	17.79
Hwy 65 #2	Faulkner	65	9	11.79
Hwy 65 #10	Faulkner	65	9	11.79
Hwy 65 #11	Faulkner	65	9	13.75
Hwy 65 #12	Faulkner	65	9	17.20
Hwy 412 #10	Washington	412	2	0.95
Hwy 412 #11	Washington	412	2	2.08
Hwy 412 #12	Washington	412	2	4.05
Hwy 412 #13	Washington	412	2	6.27
Hwy 412 #14	Washington	412	2	7.55
Hwy 412 #15	Washington	412	2	8.63

Appendix B contains detailed information about each site, such as location within the state and county, the type of pavement section, and where sampling occurred along the pavement cross-section. An attempt was made during site selection to include highways in each geographic area of the state. The following sections are a brief summary of each site and why it was, or was not, included in the study. The sites are arranged chronologically, based on sampling date, beginning with the earliest.

3.1.1 HIGHWAY 82

Highway 82 was sampled in Columbia County between Magnolia and El Dorado, approximately 8 miles east of Magnolia. This site was selected because it was a two-lane stone base pavement section that had been widened to three lanes in 1990 with full-depth asphalt. Highway 82 was sampled in two locations. The first was a section that had been widened in the eastbound direction. The second was a section that had been widened in the westbound direction. The main downfall of this site is that it provides a comparison between an inside lane that has a crushed stone base and an outside lane that has an asphalt stabilized base. This means that the traffic distribution is not identical for the two pavement types because heavier trucks use the outside (full-depth) lane to allow faster, lighter vehicles to pass on the inside (stone base) lane. However, this section of Highway 82 was considered an acceptable companion section and included in the study.

3.1.2 HIGHWAY 167

Highway 167 was sampled in Union County approximately 2 miles south of El Dorado. This site was selected because it was a two-lane stone base pavement section that was being widened from two to four lanes with full-depth asphalt. This would have allowed a good comparison. However, it was found that the widening job was still in progress and the new full-depth section had only been driven on during staged construction. It was for this reason that this section of Highway 167 was not included the study.

3.1.3 HIGHWAY 15

Highway 15 was sampled in Bradley County approximately 20 miles east of El Dorado. It was sampled because it was constructed with a crushed stone base course. After sampling, there did not appear to be a good companion section where the traffic loading could be assumed equal. Therefore, this section of Highway 15 was not included the study.

3.1.4 HIGHWAY 7 SPUR

Highway 7 Spur was sampled in Union County in El Dorado. It was selected for sampling because it consisted of a stone base pavement section that had been widened with full-depth asphalt. However, during sampling, it was discovered that the pavement was actually an asphalt overlay of an existing concrete pavement. Also, the full-depth section was located in a non-traveled lane as part of the widening for a bridge approach and was not currently used to carry any traffic. Therefore, this section of Highway 7 Spur was not included in the study.

3.1.5 HIGHWAY 79

Highway 79 was sampled in Calhoun County approximately 40 miles north of El Dorado. This site was selected because it was constructed with a crushed stone base course. It was sampled in two locations. Both locations were at the same log mile. The first location was the eastbound lanes of the divided highway and the second was the westbound lanes of the divided highway. There does not appear to be a good companion section for a direct comparison to full-depth asphalt. However, this section of Highway 79 was included in the study because it appeared to be a good representation of a stone base pavement section that had a reasonable service history.

3.1.6 OTTER CREEK ROAD

Otter Creek Road was sampled in Pulaski County in Little Rock. This site was selected because it was constructed with full-depth construction with the adjacent section being a stone base pavement. However, it was discovered that the adjacent section of Otter Creek Road was constructed with PCC. Therefore, Otter Creek Road was not included in the study.

3.1.7 HIGHWAY 165

Highway 165 was sampled in Lonoke County 5 miles east of Humnoke. This site was chosen because it represented a two-lane stone base pavement that was widened with full-depth asphalt. However, it was discovered during sampling that only the very outside of the existing lanes and the shoulders were full-depth. This situation does not allow the assumption that traffic distribution is equal for both the stone base and full-depth sections. Therefore, this section of Highway 165 was not included in the study. However, it should be noted that this was one of the first Superpave jobs in Arkansas and it showed severe signs of stripping.

3.1.8 HIGHWAY 49

Highway 49 was sampled in Greene County 5 miles south of Paragould. This site was sampled because it was a two-lane stone base pavement that was widened to four lanes with full-depth asphalt. Highway 49 was sampled in two locations. The first location was a portion of Highway 49 that was being widened on the west side of the existing lanes. The second location represented a portion of Highway 49 that was being widened on both sides of the existing lanes. Although there was not a portion of Highway 49 widened with a stone base pavement section, Highway 49 was considered a good companion section and included in the study for comparison between the inside lane, stone base section and the outside lane, fulldepth section.

3.1.9 HIGHWAY 412 (#1-#2)

This section of Highway 412 was sampled in Lawrence County 20 miles west of Paragould. This site was selected because, based on construction plans, it represented a stone base pavement section that was widened with full-depth. However, the widened section was only for a bridge approach and had not experienced any traffic loading. It was also discovered that the stone base asphalt pavement was actually an overlay of a PCC pavement. Therefore, this section of Highway 412 was not included in the study.

3.1.10 HIGHWAY 270

Highway 270 was sampled in Garland County approximately 7 miles east of Hot Springs. This site was selected because it represented a stone base pavement that had been widened from two to four lanes with a stone base pavement in one section and full-depth in another section. Two locations were sampled. The first location represented a portion that was widened using a pavement with a crushed stone base. The second location represented a portion that was widened using a pavement with an asphalt stabilized base. This section of Highway 270 provides excellent companion sections where the same traffic

loading travels over both types of pavements. Therefore, this section of Highway 270 was included in the study.

3.1.11 HIGHWAY 65

Highway 65 was sampled in Faulkner County approximately 2 miles south of Greenbrier. This site was selected because it represented a stone base pavement that had been widened from two to four lanes with a stone base pavement in some sections and full-depth in other sections. Highway 65 was sampled in 5 different locations. Two of the locations represented widening using a pavement with a crushed stone base. The other three locations represented widening using a pavement with an asphalt stabilized base. This section of Highway 65 provides excellent companion sections where the same traffic loading travels over both types of pavements. Therefore, this section of Highway 65 was included in the study.

3.1.12 HIGHWAY 71 (#1)

This section of Highway 71 was sampled in Sebastian County 15 miles south of Fort Smith. This site was selected because the existing divided highway was extended further south out of Fort Smith. Portions of the widening were constructed with full-depth, while the new lanes were constructed with a stone base pavement section. It was found during sampling, however, that the full-depth section was in the portion of Highway 71 where it was widening and dividing from 2 to 4 lanes. As a result, the full-depth section did not experience much loading and was in a difficult area to sample. Therefore, only a stone base pavement section was sampled. For this reason, this section of Highway 71 was not included in the study.

3.1.13 HIGHWAY 71 (#10-#13)

This section of Highway 71 Bypass was sampled in Washington County in Fayetteville. This site was chosen because it was constructed with full-depth asphalt. There were two major downfalls to this site. The first, there does not appear to be a good companion section. The second, some of the locations sampled were in a section of Highway 71 that was recently renamed Highway 540. As part of this

renaming, the mile markers were changed. This created problems gathering design and performance information for the sampled sites because of log mile discrepancies. Therefore, this section of Highway 71 was not included in the study.

3.1.14 HIGHWAY 412 (#10-#15)

This section of Highway 412 was sampled in Washington County in Tonitown and Springdale. This site was selected because portions of Highway 412 were constructed with a stone base asphalt pavement and portions were widened with a full-depth asphalt pavement. A total of six locations were sampled; three of the sites represented construction and widening using a stone base pavement and the other three sites represented widening using a full-depth asphalt. This section of Highway 412 provides excellent companion sections where the same traffic loading travels over both types of pavements. Therefore, this section of Highway 412 was included in the study.

3.2 SAMPLING

Sampling along the pavement cross-section consisted of borings in the inside wheelpath, the center of the lane, and the outside wheelpath. At some locations, the shoulder was also sampled. Not all of these locations across the pavement were sampled at every location. Decisions were made on-site at each location to determine which spots along the cross-section would be sampled. An attempt was made when selecting the location of sampling to pick a section of the pavement that was showing signs of distress, namely, rutting and fatigue cracking to represent a worst case condition. This requirement had to be balanced with available site distance for the maintenance of traffic.

For each boring, the 4-inch diameter asphalt core, including asphalt stabilized base, where applicable, was inspected for stripping and then measured for thickness. Specific gravities, gradation, and resilient moduli were determined as part of phase two of this research. Figure 3.2 (a) shows the equipment used to obtain the asphalt cores.

Figure 3.2 (a): Asphalt Coring Equipment

Zip-Lock[®] (gallon size) bags were used to collect and transport samples of the granular base material for moisture content and grain size testing. Where possible, shelby tubes were pushed into the subgrade up to a depth of five feet in some locations. When the shelby tubes could not be pushed, due to a high gravel content in the subgrade, split spoon sampling was used and blow counts were recorded. Resilient Modulus tests were run on the shelby tube samples as part of phase two of this research. Figure 3.2 (b) shows the drill rig used to obtain bag samples by use of a solid stem auger, push shelby tubes, and perform standard penetration testing.

Figure 3.2 (b): Drill Rig Used for Sampling

Appendix C contains the field notes made during the sampling process at each site.

3.3 LABORATORY TESTING

Laboratory tests were performed on the asphalt cores, base course samples, and subgrade samples. For the purpose of this report, the main laboratory test of interest involves the moisture content of the subgrade.

3.3.1 MOISTURE CONTENTS

The first series of tests were moisture content determination on both the aggregate base course samples and the subgrade samples. The moisture content at the top of the subgrade was of interest because one of the assumed downfalls of using full-depth asphalt pavements is that it increases the moisture content directly beneath the asphalt. An increase in moisture content in the subgrade will reduce the stiffness of the subgrade. This reduction could possibly lead to distress, such as fatigue cracking and rutting. Table 3.3.1 (a) shows a summary of moisture contents in the top of the subgrade under both stone base and full-depth pavements. Detailed moisture content test results are located in Appendix D and in Appendix E.

Tab	le	3.:	3.:	1 ((a)): \$	Summary	/ of	M	loisture	Contents	in	Toj	o of	Subgrad	de
-----	----	-----	-----	-----	-----	-------	---------	------	---	----------	----------	----	-----	------	---------	----

Location	Sample #	Pavement Type	Moisture Content at Top of Subgrade, %
	B-2, S-1	Full-Depth	12.87
Hwy 82 #1	B-3, S-1	Full-Depth	14.40
	B-5, S-1	Stone Base	21.42

Hwy 82 #2	B-2, S-1	Full-Depth	16.69
y	B-5, S-1	Stone Base	25.61
	B-1, S-2	Stone Base	19.62
Hwy 79 #1	B-2, S-1	Stone Base	7.75
	B-2, S-2	Stone Base	18.69
	B-1, S-2	Stone Base	29.77
Hwy 79 #2	B-3, S-2	Stone Base	29.15
	B-5, S-2	Stone Base	22.72
Hwy 49 #1	B-1, S-2	Stone Base	19.15
	B-2, S-2	Stone Base	20.67
	B-1, S-1	Full-Depth	21.04
	B-3, S-2	Stone Base	21.58
Hwy 49 #2	B-4, S-2	Stone Base	15.90
	B-7, S-1	Full-Depth	20.69
	B-8, S-2	Stone Base	13.49
	B-1, S-2	Stone Base	11.41
	B-2, S-2	Stone Base	9.38
Hwy 270 #1	B-3, S-2	Stone Base	9.62
	B-5, S-2	Stone Base	14.95
	B-6, S-1	Stone Base	10.00
	B-7, S-2	Stone Base	15.39
Hwy 270 #2	B-1, S-1	Full-Depth	19.97

	B-2, S-1	Full-Depth	21.93
	B-3, S-2	Full-Depth	20.96
	B-5, S-1	Full-Depth	9.73
Hwy 65 #1	B-5, S-2	Stone Base	12.73
	B-7, S-1	Stone Base	4.28
Hwy 65 #10	B-6, S-1	Stone Base	15.48
Hwy 65 #11	B-4, S-1	Stone Base	15.45
Hwy 65 #12	B-2, S-1	Full-Depth	8.44
Hwy 412 #10	B-1, S-2	Stone Base	30.09

Table 3.3.1 (a) (Continued): Summary of Moisture Contents in Top of Subgrade

Location	Sample #	Pavement Type	Moisture Content at Top of Subgrade, %
Hwy 412 #11	B-1, S-2	Stone Base	17.10
	B-2, S-2	Stone Base	17.86
	B-1, S-1	Full-Depth	24.86
	B-2, S-1	Full-Depth	28.42
Hwy 412 #12	B-3, S-1	Full-Depth	19.47
	B-4, S-1	Full-Depth	24.79
	B-5, S-1	Full-Depth	22.06
Hwy 412 #13	B-1, S-1	Full-Depth	11.60

	B-2, S-1	Full-Depth	15.64
	B-3, S-1	Full-Depth	18.00
	B-4, S-1	Full-Depth	16.31
	B-5, S-1	Full-Depth	19.07
	B-1, S-1	Full-Depth	20.89
Hwy 412 #14	B-2, S-1	Full-Depth	14.19
	B-3, S-1	Full-Depth	18.37
	B-4, S-1	Full-Depth	17.14
Hwy 412 #15	B-2, S-1	Full-Depth	21.07
	B-3, S-1	Full-Depth	20.43

When analyzing the data presented in Table 3.3.1 (a), it is important to realize that different subgrade materials often have a different optimum moisture content (OMC). It is therefore necessary to compare moisture contents relative to OMC. A relationship that correlates moisture content to OMC is the ratio of moisture content to plastic limit (PL). Plastic limit is typically three to five percent above OMC. For this correlation to be valid, it must be assumed that the subgrade material is placed at or near OMC. If the ratio of moisture content to PL is greater than one, the subgrade is clearly gaining water. On the other hand, the ratio of moisture content to PL is far less than one, the subgrade is drying out. Table 3.3.1 (b) contains the moisture content, PL obtained from Atterburg Limit testing, and the ratio of moisture content to PL for several of the sites included in this study.

Table 3.3.1 (b): Ratios of Moisture Content to Plastic L	imit
--	------

	~ .		Moisture	Plastic	Ratio of
Location	Sample	Pavement Type	Content, %	Limit, %	Moisture

					Content to PL
Hwy 82 #1	B-5, S-1	Stone Base	21.42	19.0	1.127
Hwy 82 #2	B-2, S-1	Full-Depth	16.69	14.4	1.159
Hwy 82 #2	B-5, S-1	Stone Base	25.61	26.6	0.963
Hwy 79 #1	B-1, S-2	Stone Base	19.62	19.6	1.001
Hwy 79 #1	B-2, S-1	Stone Base	7.75	14.2	0.540
Hwy 270 #1	B-5, S-2	Stone Base	14.95	19.6	0.763
Hwy 270 #1	B-6, S-1	Stone Base	10.00	16.7	0.599
Hwy 270 #2	B-1, S-1	Full-Depth	19.97	17.5	1.141
Hwy 270 #2	B-3, S-2	Full-Depth	20.96	17.0	1.233
Hwy 65 #10	B-6, S-1	Stone Base	15.48	17.8	0.870
Hwy 65 #12	B-2, S-1	Full-Depth	8.44	17.4	0.485
Hwy 412 #11	B-1, S-2	Stone Base	17.10	18	0.950
Hwy 412 #12	B-4, S-1	Full-Depth	24.79	23	1.078

From the data presented in Table 3.3.1 (b), the average moisture content to plastic limit ratio for the full-depth sections is 1.005, while for the stone base sections the ratio is 0.838. These average ratios may be influenced by a skewed data point so each ratio will be compared on a site-by-site basis. Four of the above highways (82, 270, 65, and 412) provide a direct comparison between the moisture content to plastic limit ratio for stone base and full-depth sections. Of these four sites, one has a higher moisture content to plastic limit ratio for the stone base section, while the other three have a higher ratio for the full-depth sections. However, of these three sites, the difference in ratios between the two pavement types is small.

Overall, this data indicates that the subgrade material under the full-depth sections is gaining moisture once it is placed, while the subgrade under the stone base sections is becoming slightly drier. Based on this research, it appears that the use of full-depth results in an increase in moisture content of the subgrade. This increase could be the cause of the poor performance found in the full-depth pavements, which will be discussed in the following sections.

3.4 ROUGHNESS AND RUTTING

AHTD rutting and IRI data was obtained for each of the sites sampled. Appendix F contains the rutting and IRI data obtained from AHTD for the sites included in this study. Table 3.4 (a) shows a summary of current IRI measurements relative to pavement cross-section, averaged over a two mile span, for each location included in the study. The average IRI was obtained by using the higher IRI of the left and right wheelpath for each length increment measured and taking an average of the IRI measurements for a two-mile span. The PSI, based on Equation 4, and the pavement condition based on the scale provided in *Highway Statistics 1994* is also presented in Table 3.4 (a)

Table 3.4 (a): Summary of IRI Data

		Average IRI (m/km)		Calculated PSI		
Location	Year	Stone Dese	Full-	Stone Dere	Full-	Pavement
Location	Built	Stone Base	Depth	Stone Base	Depth	Condition*
		Sections	Sections	Sections	Sections	
Hwy 82 #1	1990	1.83	1.81	3.03	3.05	F
Hwy 82 #2	1990	1.85	2.21	3.01	2.73	F/M
Hwy 79 #1	1991	1.39	N/A	3.47	N/A	G

& #2						
Hwy 49 #1	1999	**	2.41	**	2.60	М
Hwy 49 #2	1999	**	2.18	**	2.85	М
Hwy 270 #1	1984	3.08	N/A	2.22	N/A	Р
Hwy 270 #2	1981	3.16	3.82	2.18	1.89	Р
Hwy 65 #1	1987	1.34	N/A	3.53	N/A	G
Hwy 65 #2 & #10	1988	2.03	2.75	2.87	2.39	M/P
Hwy 65 #11	1988	1.54	2.22	3.31	2.73	F/M
Hwy 65 #12	1987	1.29	N/A	3.58	N/A	G
Hwy 412 #10	1994	1.38	N/A	3.49	N/A	G
Hwy 412 #11	1994	1.32	N/A	3.55	N/A	G
Hwy 412 #12	1994	1.32	1.11	3.54	3.81	G
Hwy 412 #13	1994	1.41	1.66	3.44	3.18	G/F
Hwy 412 #14	1987	1.72	2.03	3.12	2.87	F/M

Hwy 412 #15	2.34	N/A	2.64	N/A	М

Note: 1 m/km = 63.36 in/mi

* G = Good, F = Fair, M = Mediocre, and P = Poor

** IRI data not available for Highway 49 stone base lanes

From the information presented in Table 3.4 (a), it appears that full-depth pavements have a higher IRI and lower PSI, in general, which means that the full-depth pavements are rougher. The average PSI for the full-depth pavement sections is 2.81 and the average PSI for the stone base pavement sections is 3.13. This difference is not significant (0.50 or greater). It is highly unlikely that the average motorist could even feel a 0.32 difference in PSI. For seven of the eight sites that could be directly compared, the full-depth sections have a higher or equal IRI and lower PSI. At the location where the full-depth pavement has a higher PSI, the difference in PSI between stone base and full-depth is not significant. On the other hand, at the six locations where the stone base pavements are performing better, the difference in PSI is significant enough to conclude that the stone base pavements are performing better, relative to roughness, than the full-depth sections. Any conclusion from this data presumes that all of the pavement structures were constructed to the same initial smoothness.

It should be noted that the comparison of this data does not necessarily take into consideration either the age of the pavements or the traffic volumes carried by the pavements, both of which could have a considerable impact on PSI. Only for the locations with the same construction dates can age and traffic be presumed equal. Table 3.4 (a) simply compares the current state of each of the pavements.

Based on the calculated PSI, all of the pavements appear to be performing adequately. However, to confirm this, the calculated PSI should be compared to the expected PSI for each pavement. This will take into account the age of the pavements and the traffic volumes that they have carried. The expected PSI should be calculated using the AASHTO Performance Equations as determined from the AASHO Road Test (AASHTO, 1993). Appendix I contains detailed information on the calculation of ESAL's and expected PSI. Further discussion of traffic estimates and ESAL calculations are located in Section 3.6.

Table 3.4 (b) shows a summary comparing the current and expected serviceability indexes for the outside lanes of the pavements.

	Vaar	SN (using current	Expected PSI	Current PSI
Location	Built	AHTD Layer	(from AASHTO	(from Equation
		Coefficients)	Equations)	4)
Hwy 82 #1 (FD)	1990	5.5	3.70	3.05
Hwy 82 #2 (FD)	1990	5.5	3.70	2.73
Hwy 79 #1 & #2 (C)	1991	5.23	3.59	3.47
Hwy 49 #1 (FD)	1999	4.2	3.04	2.60
Hwy 49 #2 (FD)	1999	5.5	3.68	2.73
Hwy 270 #1 (C)	1984	4.25	2.03	2.22
Hwy 270 #2 (FD)	1981	5.3	3.24	1.89
Hwy 65 #1 (C)	1987	4.42	2.38	3.53
Hwy 65 #2 & #10 (FD)	1988	5.6	3.28	2.39
Hwy 65 #11 (FD)	1988	5.66	3.31	2.73
Hwy 65 #12 (C)	1987	4.42	2.38	3.58
Hwy 412 #10 (C)	1994	5.28	3.46	3.49
Hwy 412 #11 (C)	1994	5.28	3.46	3.55
Hwy 412 #12 (FD)	1994	6.1	3.65	3.81
Hwy 412 #13 (FD)	1994	6.5	3.72	3.18
Hwy 412 #14 (FD)	1987	5.3	2.96	2.87

Table 3.4 (b): Summary of Current Versus Expected Serviceability Indexes

Comparing the expected and current serviceability indexes as shown in Table 3.4 (b) reveals that a very specific trend has developed. Practically all of the stone base pavement sections have a current PSI, determined using Equation 4, that is higher than the expected PSI, determined from the AASHTO equations. On the other hand, almost all of the full-depth sections have current PSI's lower than expected. From this data, it is apparent that the full-depth sections are not performing as well as expected, while the stone base sections are performing better than expected.

It is also important to note the rut depths at these locations. IRI is a measure of smoothness, not rutting. Rutting, if severe, could have a significant impact on performance. Rutting should be accounted for when determining PSI. Table 3.4 (c) shows a summary of rut depth data provided by AHTD relative to pavement cross-section averaged over a two mile span for each location included in the study.

	Year	Average Rut Depths (mm)		
Location	Construction	Stone Base	Full-Depth	
	Was Finished	Sections	Section	
Hwy 82 #1	1990	6.8	5.3	
Hwy 82 #2	1990	6.6	7.5	
Hwy 79 #1 & #2	1991	5.2	N/A	
Hwy 49 #1	1999	*	6.6	
Hwy 49 #2	1999	*	7.8	
Hwy 270 #1	1984	5.8	N/A	
Hwy 270 #2	1981	5.8	5.3	
Hwy 65 #1	1987	4.3	N/A	
Hwy 65 #2 & #10	1988	7.7	8.1	
Hwy 65 #11	1988	5.4	5.7	
Hwy 65 #12	1987	4.2	N/A	

Table	3.4	(c):	Summary	of Rut	: Depth	Data
-------	-----	------	---------	--------	---------	------
Hwy 412 #10	1994	6.4	N/A			
-------------	------	-----	-----			
Hwy 412 #11	1994	6.3	N/A			
Hwy 412 #12	1994	6.2	5.3			
Hwy 412 #13	1994	5.3	4.7			
Hwy 412 #14	1987	5.8	5.5			
Hwy 412 #15		7.1	N/A			

Note: 1 in = 25.4 mm

* Rut depth not available for Highway 49 stone base lanes

As can be seen in Table 3.4 (c), there does not appear to be any trend relative to rut depths and pavement type. The average rut depth for the stone base pavements is 5.9 mm (0.232 inches), while the average rut depth for the full-depth sections is 6.2 mm (0.244 inches). Of the eight locations that provided a direct comparison of rut depths in a stone base lane versus a full-depth lane, five of the locations have greater rut depths in the stone base lanes, compared to three locations where the rutting was more severe in the full-depth lanes.

It should also be noted that in most of these situations, the comparison is between an interior lane, which is the stone base section, and an outside lane, which is a full-depth section. Because most large, heavy vehicles use the outside lane so that faster, lighter vehicles may pass, it seems natural to assume that the rutting in the full-depth sections to have somewhat higher rut depths because of the heavier loading. For the pavements in this study, rut depths were virtually the same for both types of pavements. Based on the logic stated above, one might conclude that the full-depth pavements are providing a better resistance to rutting when compared to the stone base pavements.

AHTD does not currently have criteria which rates the quality of the pavement based on rut depth. However, the average rut depths for all of the locations seem to be acceptable. Based on Asphalt Institute design procedures, rut depths of 12.7 mm (0.5 inch) indicate failure (Huang, 1993). Although actual field rut depth measurements were not made at the time of sampling, the rutting at some of the locations, such as Highway 82, appeared to be more severe than the measurements obtained from AHTD. Figure 3.4 shows how severe the rutting was along Highway 82

Figure 3.4: Rutting Along Highway 82

Based on the information obtained, there does not appear to be any evidence that the use of either crushed stone or an asphalt stabilized material affects how much rutting will occur in a pavement section.

3.5 STRIPPING

A possible cause of poor pavement performance is stripping. Stripping occurs when the asphalt cement looses its adhesion to the aggregate, usually in the presence of water. During the sampling process, the asphalt cores were examined for stripping. Table G-1 contains a summary of which cores showed signs of stripping. Appendix G also contains pictures of the asphalt cores with markers showing where the stripping, if any, occurred. Table 3.5 shows a summary of stripping found relative to the type of pavement structure.

Location	Total # of Stone Base Section Cores	Percent of Stone Base Section Cores Showing Stripping	Total # of Full- Depth Section Cores	Percent of Full- Depth Section Cores Showing Stripping
Hwy 82	2	50%	6	83%
Hwy 79	*	*	*	*
Hwy 49	5	20%	5	0%
Hwy 270	8	63%	7	86%
Hwy 65	16	44%	12	67%
Hwy 412	8	0%	18	11%
For All Sites				
Included In Study	37	36%	42	38%

Table 3.5: Summary of Stripping in the Asphalt Cores

* No adequate field evaluation of stripping

Based on the cores taken and the field observations made, there is no evidence that stripping occurs more often in full-depth pavements than it does in stone base pavement sections. The percentage of cores showing stripping is basically the same for both pavement types. In fact, the overall percentage of cores, including sites not included in the study, showing signs of stripping is approximately 36 percent for stone base pavements and approximately 33 percent for full-depth sections. Therefore, there is no conclusion that the use of either one of these materials increases the pavement's probability of experiencing stripping, which leads to pavement distress. However, in the majority of the full-depth sections that showed signs of stripping, the stripping was typically located at the bottom of the core in the base course. This could greatly affect the ability of the base course to provide support. By definition, it is not possible

for granular material to experience stripping. Therefore, in stone base sections the loss of support due to stripping in the base course is not possible. However, the moisture that would cause stripping in an asphaltic material can cause a loss of strength in a crushed stone base.

3.6 TRAFFIC

Traffic loading can also be a cause of poor performance. If the pavement structure was designed for a particular number of equivalent 18-kip single axle loads (ESAL's), and the traffic volumes have been greater than expected, a pavement will reach the end of its design life sooner than expected.

To confirm if the design traffic for the pavements in this study were accurate, they were compared to the actual traffic that each pavement has carried since construction. Both design and actual ESAL's were calculated using an Excel spreadsheet and ADT counts through the end of 1997, both provided by AHTD (Bennett, 1999). This spreadsheet automates the AASHTO procedure (AASHTO, 1993) based on the input of several variables. The first is the number of the axle distribution table to use, which is based on the functional class of the traffic. There are eight tables to choose from based on nine different functional classes. Next, a seed value for the structural number is required. Acceptable values are 4, 5, or 6.

To determine the effect of the seed SN on ESAL's, a sensitivity analysis was performed to evaluate the change in calculated ESAL's as a function of the seed SN used. Figure 3.6 is an example of part of the sensitivity analysis. ESAL's were calculated by assuming 20% trucks, a year 1 average daily traffic (ADT) of 5,000, and a year 20 ADT of 148,900. ESAL's were calculated using SN's of 4, 5, and 6. The curve on Figure 3.6 represents the calculated ESAL's normalized with the ESAL's for a SN of 4. Similar analyses were performed to verify that the overall results were the same for various percent trucks and functional classes of traffic. The graphs produced from those analyses followed similar trends. It was found that no significant change occurred between 5 and 6.

Figure 3.6: Results of Sensitivity Analysis

Once the axle distribution and seed SN are entered, the spreadsheet imports a weight table and the axle distribution table, which are based on AHTD data from around the state. Finally, the current and future traffic counts are entered. The spreadsheet then calculates a 24-hour ESAL based on current AASHTO procedures (AASHTO, 1993). This procedure takes the current year and design year ADT, and then multiplies the design traffic by the appropriate truck factors to calculate ESAL's. Based on the 24-hour ESAL and the design period for the pavement alternative, typically 20 years, the Roadway Design division calculates the design ESAL's for the pavement.

For each of the locations, AHTD traffic counts for average daily traffic (ADT) from 1986 through 1997 were obtained. For the majority of locations, a straight-line fit of the data resulted in a fairly good approximation of the ADT data. However, there were a few locations were the ADT growths were not linear. Using the ADT values for 1997, the ESAL's that the pavement had actually carried were calculated. The pavement's design ESAL's were also calculated based on original ADT estimates.

Once the design and actual ESAL's carried were calculated, along with the pavement's age, the percent of design loading for each pavement was calculated. For a good traffic estimate used in design, the age of the pavement (as a percent of its design life) should equal the percent of design ESAL's that the

pavement has carried. For example, as of 1997, Highway 82 #1 was 8 years old with a 20 year design life, which means that 40 percent of its design life has been reached. The pavement was designed to carry 1,319,840 ESAL's. Based on ADT counts through 1997, the pavement has actually carried 534,944 ESAL's, or 40.5 percent of its design ESAL's. Therefore, the traffic estimates used for the design of this pavement appear to be accurate.

Appendix H contains the ADT counts for the pavements from 1986 through 1997. Appendix I contains the spreadsheets from the ESAL calculations. Table 3.6 is a summary of the ESAL calculations.

	Year	Design	Actual	Design Life	Design ESAL's
Location	Built	ESAL's	ESAL's	Experienced, %	Experienced, %
Hwy 82 #1 & #2	1990	1319840	534944	40	40.5
Hwy 79 #1 & #2	1991	2081960	591738	35	28.4
Hwy 49 #1	1999	2660120	576700	25	21.7
Hwy 49 #2	1999	3547800	508080	20	14.3
Hwy 270 #1	1984	2566680	2115540	75	82.4
Hwy 270 #2	1981	3036800	1971000	90	64.9
Hwy 65 #1 & #12	1987	3106880	1979614	65	63.7
Hwy 65 #2, #10, & #11	1988	4236920	2360820	55	55.7
Hwy 412 #10 & #11	1994	4625280	747520	20	16.2
Hwy 412 #12	1994	5057440	961848	20	19.0
Hwy 412 #13	1994	4610680	1061128	20	23.01

Table 3.6: Summary of ESAL Calculations

Hwy 412 #14	1987	5708600	3136518	55	54.9

The data presented in Table 3.6 seems to indicate that the design traffic volumes replicate actual traffic conditions very well. There was some concern that an excess of traffic not accounted for during the design phase of the pavements included in this study might have been the cause of the poor performance of some of these pavements. However, from the data presented in Table 3.6, it can be assumed that any of the poor performance found during this research should not be considered the result of bad traffic estimates made during the design of the pavements.

CHAPTER 4

ECONOMIC ANALYSIS

The economic analysis performed on these highways is slightly different than the life-cycle cost analysis described in Chapter 2. That LCCA described the process of estimating and analyzing costs to select which pavement alternative to construct. For that case, it is necessary to estimate initial construction costs, maintenance costs, and user costs, along with salvage values. The pavements compared as part of this research have already been constructed. As a result, actual costs, rather than estimated costs, associated with the pavement's life from construction to present day are used. User costs will not be included in the analysis since they would only have a minor impact, if any, and would be based on assumptions that may, or may not, be accurate. The economic analysis comparing the pavements in this research project will consist of initial construction costs, maintenance costs, and salvage values. Since the pavements were all constructed at different times, it is necessary to convert all costs to a common year. The pavements are also of different lengths. Therefore, all costs associated with the pavements will be analyzed on a per lane-mile basis. When deciding what discount rate to use, the historical trends in the discount rate of the U.S. Treasury Bills were looked at. During the 1980's, the discount rates were considerably higher compared to the 1990's. Therefore, two different discount rates will be used in the analysis: 9.0% for the 1980's and 4.5% for the 1990's. To compare these pavements, a Net Present Worth (NPW) analysis will be performed. However, to reduce the impact of the discount rate over large periods of time, all of the costs associated with the pavements will be compared using 1990 as the base year. This will minimize the impact of the assumed discount rate by shortening the length of time that the costs are moved. For example, if all of the costs were brought to 1999, pavements with construction costs occurring in the early 1980's would be greatly affected by the assumed discount rate. If the discount rate used was too high, the 1999 NPW of the pavement would be higher, resulting in the pavement appearing to be less economical. At the same time, the construction costs for the pavements constructed in the 1990's would not be as affected by the high discount rate of the 80's resulting in those sections appearing more economical.

60

4.1 CONSTRUCTION COSTS

For the sites included in this study, the initial construction costs were determined from AHTD records. These records included the construction plans and contract bid unit costs. All construction costs not associated with the roadway, such as guardrails, temporary erosion control, and signing, were excluded from the construction costs used in the economic analysis. The costs used include all costs associated with the construction of the pavement and shoulders, such as base material, paving materials, and shoulder material, including installation costs. Appendix J contains all of the materials, quantities, and unit costs used to determine construction costs for each of the locations. Table 4.1 (a) shows the initial construction costs per lane-mile for each of the pavement sections being analyzed.

Location	AHTD Job Number	Type of Construction	Year Built	Construction Costs (\$)	Length of Project (miles)	Costs per Lane-Mile (\$/lane- mile)
Hwy 82 #1 & #2	R70050	Full-Depth	1990	2,451,167	13.406	60,947
Hwy 79 #1 & #2	R70016	Stone Base	1991	3,207,354	3.171	252,866
Hwy 49 #1	R00081	Full-Depth	1999	2,404,652	3.52	170,785
Hwy 49 #2	R00071	Full-Depth	1999	4,153,243	5.171	200,795
Hwy 270 #1	60116	Stone Base	1984	1,927,812	3.375	142,801
Hwy 270 #2	60115	Full-Depth	1981	2,260,064	3.591	157,342

Table 4.1	(a):	Initial	Construction	Costs
-----------	------	---------	--------------	-------

Hwy 65 #1 & #12	8827	Stone Base	1987	1,861,638	3.514	105,955
Hwy 65 #2, #10, & #11	R80010	Full-Depth	1988	1,427,253	2.959	96,469
Hwy 412 #10 & #11	1675	Stone Base	1994	9,402,240	11.717	200,611
Hwy 412 #12 & #13	40112	Full-Depth	1994	1,846,201	4.271	86,453
Hwy 412 #14	R40016	Full-Depth	1987	1,060,611	1.619	131,021

Table 4.1 (a) shows the construction costs per lane-mile for each of the locations. However, these jobs were not all built in the same year. The time value of money should be accounted for when comparing these costs. Therefore, it is necessary to compare all of the costs converted to the same year. Table 4.1 (b) shows a comparison of initial costs per lane-mile in 1990 dollars.

Table 4.1 (b): Initial Construction Costs Adjusted to 1990 Dollars

Location	Year Built	Design ADT	Type of Construction	Costs per Lane-Mile (\$/lane-mile)	Costs in 1990 Dollars
Hwy 82 #1 & #2	1990	2,760	Full-Depth	60,947	60,947
Hwy 79 #1 & #2	1991	3,930	Stone Base	252,866	241,977
Hwy 49 #1	1999	7,525	Full-Depth	170,785	114,922
Hwy 49 #2	1999	10,000	Full-Depth	200,795	135,116
Hwy 270 #1	1984	6,650	Stone Base	142,801	239,492

Hwy 270 #2	1981	8,940	Full-Depth	157,342	341,730
Hwy 65 #1 & #12	1987	11,320	Stone Base	105,955	137,215
Hwy 65 #2, #10, & #11	1988	11,095	Full-Depth	96,469	114,615
Hwy 412 #10 & #11	1994	7,195	Stone Base	200,611	168,225
Hwy 412 #12 & #13	1994	8,950	Full-Depth	86,453	72,496
Hwy 412 #14	1987	10,425	Full-Depth	131,021	169,676

From the data in Table 4.1 (b), there are three locations where a direct comparison of construction costs can be made. For two of these sites, the construction costs for the full-depth sections were less expensive. Of the other, non-direct, comparison sites the full-depth pavements were also the less expensive alternative.

The construction costs used in this analysis were obtained by first calculating the quantities of all the materials of interest from the quantity sheets in the construction plans, and then using the bid unit costs to determine the total cost of the project. The materials used include the paving materials required to construct the new lanes and shoulders, along with the materials required to overlay the existing lanes.

In an effort to confirm the method used to determine construction costs, quantities were calculated using the design typical cross-section for a one-mile stretch of the outside lane and shoulder for Highway 270 #1 (stone base section) and Highway 270 #2 (full-depth section). Using this method, the construction costs, in 1990 dollars, for Highway 270 #1 was \$188,360 and for Highway 270 #2 was \$313,356. Both methods gave relatively the same costs, which indicates that the method used to determine initial costs is accurate for the purpose of this analysis. It should be noted that the higher initial costs for Highway 270 #2, the full-depth section, compared to Highway 270 #1, the stone base section, is the exception, rather than the rule.

Based on 1990 dollars, the average construction costs for the full-depth pavements was \$144,214 per lane-mile, while the average construction costs for the stone base pavements was \$196,727 per lanemile. This information confirms the idea that full-depth pavements are cheaper to construct, at least as far as initial costs are concerned. It is important to note that not all of these pavements were designed with the same structural capacity, which could affect the construction costs. An attempt was made when selecting test sections to choose sections with similar design traffic, so that this problem could be avoided. The above costs show that full-depth pavements are less expensive to construct than stone base pavements. To normalize these costs with structural capacity, a comparison was made between the two pavement types based on construction costs per lane-mile per thousand ESAL's. Using the design ESAL's, located in Appendix I, it was found that the average costs for the stone base sections was \$63,642, while only \$37,544 for the full-depth sections. This provides further evidence that full-depth pavements are less expensive to construct.

The initial savings associated with full-depth pavements could be quite significant. For example, given the average construction costs, from Table 4.1 (b), and a five-mile, widening project consisting of two lanes of new construction and two lanes of overlay of the existing pavement, the total paving costs using a stone base pavement section would be \$3,934,540, while a full-depth pavement would only cost \$2,884,300, a savings of over one million dollars.

It is still necessary to determine the life-cycle costs for each of these pavements, as will be discussed later.

4.2 MAINTENANCE AND REHABILITATION COSTS

Maintenance costs for all of the pavements were obtained from AHTD Maintenance records. These records contain information on how much money is spent on each route and section of every highway in the State of Arkansas per year dating back to 1981. These maintenance records include all maintenance activities, including those unrelated to the pavement such as mowing, trash pick-up, and sign repair and replacement. A number is assigned to each type of maintenance function along with the costs spent on that function per year. The AHTD records, located on microfiche, contained a breakdown for how much was spent on each maintenance function for a particular section in a given year. The locations of interest were found for each year and all the costs associated with that route and section were hand-copied along with the appropriate maintenance function code.

64

Once the records were obtained for the sections of interest, all of the costs unrelated to flexible pavement maintenance were eliminated. It is interesting to note that once the maintenance costs that were not of interest were eliminated, the maintenance cost per year for a section of highway typically reduced by over 50 percent. This means that a lot of the maintenance costs for the highways in Arkansas are composed of items that are not directly related to pavement performance, such as mowing and litter pickup.

The costs were then divided by the length of the section to obtain the maintenance costs per mile for each section. However, AHTD maintenance records are only broken down into route and section. The current record keeping system averages the costs of maintenance jobs over the entire section. If a maintenance activity takes place on only a portion of the section, AHTD records will still show that the expense of that project affected the entire section. Therefore, the maintenance histories for the companion sections located on the same route and section are the same, no matter what the cross-section of the pavement is. Maintenance costs that could be affected by this situation include activities such as spot sealing, asphalt patching, and cold milling operations. Costs associated with maintenance functions such as overlays are less likely to be affected by this situation since they typically occur over a large section of pavement. Given current AHTD record keeping, it is difficult to differentiate between routine maintenance and rehabilitation work. For the purpose of this study, all work performed by AHTD will be considered maintenance. While none were found for the sites of interest, rehabilitation work is assumed to consist of major repairs listed by AHTD Job Numbers.

Table 4.2 shows the function codes along with a description of the maintenance activity and whether or not that function was included in the maintenance cost histories for this project.

		Included in
Code	Activity Description	Maintananaa
		Maintenance

Table 4.2: Maintenance Functions

		Histories
411	Surface Treatment Patching (Spot Sealing)	Yes
412	Asphalt Patching	Yes
413	Joint Repair and Crack Filling	Yes
414	Spot Surface Replacement (Asphalt)	Yes
415	Spot Surface Replacement (Concrete)	No
416	Gravel Surface Patching	Yes
417	Blade Non-Paved Surface	No
418	Blade Non-Paved Shoulders	No
419	Other Maintenance	Yes
429	Hauling Millings to Stockpiles	Yes
430	Cold Milling Operations	Yes
431	Mud Jacking and Under Seal	No
432	Seal Coat	Yes
433	Fog Coat	Yes
435	Asphalt Leveling	Yes
436	Restore Gravel Surface	No
437	Restore Non-Paved Shoulders	No
438	Relay Asphalt Surface	Yes
441	Clean and Repair Minor Drainage Structures	Yes
442	Clean and Reshape Ditches	No
443	Machine Ditches	No
444	Mowing	No
445	Spot Roadside Grooming	No
446	Litter Pickup	No
447	Permit Driveways	No
448	Adopt a Highway	No

461	Erosion Control and Repair	No
462	Chemical Vegetation Control – Spot	No
463	Chemical Vegetation Control – Broadcast	No
481	Structure Inspection	No
482	Bridge – Deck Repair	No
483	Bridge – Deck Sealing	No
484	Bridge – Joint Repair	No
486	Bridge – Superstructure Repair	No

Table 4.2 (Continued): Maintenance Functions

		Included in
Code	Activity Description	Maintenance
		Histories
488	Bridge – Substructure Repair	No
491	Bridge – Piling Repair/Replacement	No
493	Painting Structural Steel	No
494	Channel Work/Drift Removal	No
495	Bridge – Cleaning	No
496	Bridge – Approach Leveling/Maintenance	No
500	Bridge - Miscellaneous	No
511	Snow Removal and Ice Control	No
531	Paint Strips and Edge Markings	No
532	Paint Pavement Markings	No
533	Maintain Traffic Signs	No
534	Maintain Guard Rails, Posts, and Fences	No

535	Maintain Traffic Signals and Lighting Systems	No
536	Install and Maintain Mail Box Posts	No
537	Maintain Rest Areas, Parks, and Information Bureaus	No
561	Erecting New Signs	No
565	Unusual and Disaster Maintenance	Yes
576	Landscape and Scenic Enhancement	No
580	Salvage Operations	Yes
661/672	Betterment Projects	No

Given the current record keeping system, it is not possible to compare the maintenance histories of a stone base pavement versus a full-depth pavement if they are located on the same route and section. To be able to compare the maintenance histories given this scenario it would be necessary to keep maintenance records that are broken down into either route, section, log mile, or to include a code along with the maintenance function to differentiate what the pavement cross-section is. The maintenance cost histories for the pavements included in this research project are included in Appendix J.

4.3 SALVAGE VALUE

The salvage value used in the economic analysis was determined based on the remaining serviceable life of the pavement. It was assumed that all of the pavements started with an initial PSI of 4.2, as found at the AASHO Road Test (AASHTO, 1993), and that the pavement's useful life would end at a PSI of 2.5. This gives a total serviceable life equal to a change in PSI (Δ PSI) of 1.7. The current PSI of the pavement was calculated using Equation 4 and is summarized in Table 3.4 (a). Once the current PSI was determined, the remaining serviceable life was found by subtracting the current PSI from the assumed final PSI of 2.5. The percentage of serviceable life remaining was then determined based on the current serviceable life remaining and the total serviceable life. This assumes that the decline in serviceable life is a straight line. In actuality, the deterioration of the pavement accelerates as the PSI approaches its terminal

value. However, for the purpose of determining salvage values for these pavements, it is assumed that the method used is acceptable.

The salvage value of each pavement was then estimated by determining the 1999 NPW of the initial construction costs, and then multiplying that value by the percentage of remaining serviceable life of the pavement. Initial construction costs were used because no major rehabilitation occurred toward the end of the analysis period for any of the pavement sections. Table 4.3, below, is a summary of the salvage values used in the economic analysis.

Teertien	Year	Initial Costs	Current	Serviceable Life	Salvage Value
Location	Built	(\$/lane-mile)	PSI	Remaining, %	(\$/lane-mile)
Hwy 82 #1	1990	60,947	3.05	32	13,124
Hwy 82 #2	1990	60,947	2.73	14	5,742
Hwy 79 #1 & #2	1991	241,977	3.47	57	92,812
Hwy 49 #1	1999	114,922	2.6	6	4,640
Hwy 49 #2	1999	135,116	2.73	14	12,729
Hwy 270 #1	1984	239,492	2.22	0	0
Hwy 270 #2	1981	341,730	1.89	0	0
Hwy 65 #1	1987	137,215	3.53	50	46,166
Hwy 65 #2 & #10	1988	114,615	2.39	0	0
Hwy 65 #11	1988	114,615	2.73	14	10,797
Hwy 65 #12	1987	137,215	3.58	64	59,093
Hwy 412 #10	1994	168,225	3.49	58	65,655

Table 4.3: Estimated Salvage Values

Hwy 412 #11	1994	168,225	3.55	62	70,183
Hwy 412 #12	1994	72,496	3.81	77	37,563
Hwy 412 #13	1994	72,496	3.18	40	19,513
Hwy 412 #14	1987	131,021	2.87	22	25,119

4.4 ECONOMIC ANALYSIS

A NPW analysis was performed for each location. A NPW analysis was selected instead of an EUAC analysis because the pavements were evaluated from their year of construction to 1999. If an EUAC method was used, then the construction costs of the pavements constructed within the past few years would not be distributed over as many years as the older pavements. This would result in the newer pavements appearing less economical. In a typical EUAC, used to select which alternative to construct, this problem is solved by using the same analysis period for all alternatives. However, this is an analysis of pavements that have already been constructed at different times, which limits the ability of using the same analysis periods still create a problem when using a NPW analysis. However, the problem deals with the number of years when maintenance costs occur. The older pavements in this analysis have more maintenance costs contributing to their NPW. However, as can be seen in Table 4.4, maintenance costs had a minimal impact on this analysis. Therefore, it is felt that the NPW method is appropriate for this analysis.

Appendix K contains the tables created as part of the analysis. To perform the analysis, the costs associated with each pavement section for each year were determined (Sections 4.1, 4.2, and 4.3). Each cost was then converted to its 1990 value based on the present worth factor as determined by Equation 8. The sum of all the costs was then taken as the NPW for that pavement section. Table 4.4 shows the results of the analysis.

Table 4.4: Results of Economic Analysis

	Year	Type of	NPW at 1990	Increase in NPW due to
Location	Built	Construction	(\$/lane-mile)	Maintenance Costs (%)
Hwy 82 #1	1990	Full-Depth Widening	53,826	3.28
Hwy 82 #2	1990	Full-Depth Widening	58,793	3.00
Hwy 79 #1 & #2	1991	Stone Base Pavement	180,821	0.72
Hwy 49 #1	1999	Full-Depth Widening	118,122	0.07
Hwy 49 #2	1999	Full-Depth Widening	126,628	0.06
Hwy 270 #1	1984	Stone Base Widening	244,336	2.02
Hwy 270 #2	1981	Full-Depth Widening	347,280	1.62
Hwy 65 #1	1987	Stone Base Widening	110,528	4.13

Table 4.4 (Continued): Results of Economic Analysis

Year	Type of	NPW at 1990	Increase in NPW due to
Built	Construction	(\$/lane-mile)	Maintenance Costs (%)
1988	Full-Depth	118,797	3.65
	Widening		
1988	Full-Depth	111.531	3.90
1,000	Widening		
1987	Stone Base	101,830	4.49
	Year Built 1988 1988 1987	YearType ofBuiltConstruction1988Full-Depth1988Widening1988Full-Depth1988Stone Base	YearType ofNPW at 1990BuiltConstruction(\$/lane-mile)1988Full-Depth118,797WideningFull-Depth111,5311988Widening111,5311987Stone Base101,830

		Widening		
Hwy 412 #10	1994	Stone Base	124,649	0.49
		Pavement		
Hwy 412 #11	1994	Stone Base	121,602	0.50
		Pavement) - -	
Hwy 412 #12	1994	Full-Depth	47,824	1.28
		Widening		
Hwy 412 #13	1994	Full-Depth	59,970	1.02
		Widening		
Hwy 412 #14	1987	Full-Depth	153,377	0.40
		Widening		

As can be seen in Table 4.4, maintenance costs have a low impact on the overall NPW of each location. Therefore, initial construction costs and salvage values have the greatest impact on the NPW of each of these pavement sections. Based on the NPW at 1990, the average value for the sections containing a stone base pavement structure is \$147,294 while the average full-depth value is only \$119,615. Along with an evaluation of the average NPW's, a comparison should be made of the sites where a direct comparison can be made between a stone base pavement and a full-depth pavement along the same highway. For two of the three highways that meet this criteria, the more economical pavement type is actually the stone base section. However, of these two highways, only Highway 270 showed a significant savings from the use of a stone base pavement section. Based on this information, the use of full-depth asphalt, in general, is more economical when compared to using a crushed stone base course.

A factor that should be considered when evaluating the results of this analysis is the maintenance costs used. Although it was shown that maintenance costs did not have a significant impact, if the records were specific to pavement type, then maybe the difference would be enough to affect the results of the analysis. Based on the numbers obtained in this study, maintenance costs specific to pavement type most

likely would not change the overall results, but it could make the difference between the average NPW's of the two pavement types either closer together or farther apart.

The conclusion of this economic analysis is that full-depth pavements appear to be more economical, both in initial construction costs and total costs over the life of the pavement. However, a limitation of this analysis is that the costs used do not reflect any major rehabilitation projects, because none of these pavements have undergone a major rehabilitation. Rehabilitation costs have the potential to change, maybe drastically, the outcome of the economic analysis. Another life-cycle cost analysis should be performed once the pavements have undergone rehabilitation projects to confirm that full-depth pavements are more economical over the entire life of the pavement.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

Based on the data and information obtained as part of this research, there are several conclusions:

- There is evidence, based on the pavements in this study, that stone base pavements perform better than predicted from AASHTO performance equations. On the other hand, full-depth pavements appear to not be performing as well as predicted by the AASHTO performance equations.
- 2. From the moisture content data, it appears that the selection of a full-depth pavement section results in an increase in the moisture content of subgrade, possibly leading to poor performance. This increase in moisture content could be the result of full-depth being used primarily for notch and widening projects.
- 3. Given the information obtained regarding stripping of the asphalt cores, there does not appear to be any trend relating stripping with the type of pavement section. However, it should be noted that over one-third of all the cores sampled showed evidence of stripping, which indicates that stripping is a problem within the State of Arkansas.
- 4. From the roughness data, along with the resulting PSI's, obtained as part of this research, it appears that stone base pavements are performing better than full-depth pavements. However, it should be noted that there was no initial IRI data to determine the PSI immediately after construction for each pavement. It was assumed that all of the pavements had an initial PSI of 4.2.
- 5. Based on a life-cycle cost analysis, it appears that full-depth pavements are, in general, more economical over the life of the pavement compared to stone base pavements.

5.2 RECOMMENDATIONS

As part of this project, research was performed in an attempt to determine cost histories for each testing location. The process of determining maintenance cost histories was time consuming because the records were on microfiche and viewed with the use of a machine that was not hooked up to a printer. This process could be improved tremendously with the use of a computer database. This would allow searches to be performed almost instantaneously to locate and print maintenance cost histories for multiple sites. The use of a computerized database would also allow better analysis of the cost data so that trends in spending could be reviewed.

Maintenance records were obtained for an adequate time period; however, these records were not specific enough to allow for distinction between different locations in the same route and section or for different pavement types. Changes could be made to the record keeping system so that records indicate the exact location of the maintenance activity and on what type of pavement cross-section the maintenance is being performed. Such record keeping would allow for the determination of exactly how much money is required to maintain pavements that are constructed with a crushed stone base course versus pavements that are constructed with an asphalt stabilized base course.

The exact location of maintenance activities could easily be recorded with the use of a Global Positioning System (GPS). However, recording the type of pavement cross-section may not be as simple. Maintenance workers do not necessarily know what the pavement section is. If information, such as descriptions of the pavements around the state, were kept as part of a Geographic Information System (GIS), then after a maintenance activity is performed, the location of that activity, along with the costs, could be entered into the database. The GIS program could then match information involving maintenance histories relative to pavement type.

One of the objectives of this research was to develop new criteria to aid in base course material selection. However, there is no strong evidence that there is any new criteria which should be considered. However, there is evidence that of the current factors considered (i.e. costs, performance, project location, material availability, construction time constraints), historical performance should strongly be considered. Although the full-depth pavements, in general, were more economical, they were not performing as well as the stone base sections. When selecting which alternative to construct, performance versus costs should be carefully considered.

75

There is further research that could be of benefit for both future comparisons of pavement types and to AHTD in general. The main focus of this new research should be focused on improving AHTD record keeping systems so that historical costs associated with a pavement, both construction and maintenance related, are easier to obtain for a given location.

REFERENCES

- AASHTO, 1993. Guide for the Design of Pavement Structures, American Association of State Highway and Transportation Officials.
- AHTD, 1998. Roadway Design Plan Development Guidelines, Arkansas State Highway and Transportation Department.
- AHTD, 1999. Weighted Average Unit Prices, January 1, 1999 December 31, 1999. Arkansas State Highway and Transportation Department Programs and Contracts Division.
- A. I., 1987. Thickness Design, Asphalt Pavements for Air Carrier Airports, Manual Series No. 11, Asphalt Institute.
- Benkelman, A. C., R. Ian Kingham, and H. M. Schmitt, 1962. "Performance of Treated and Untreated Aggregate Bases," *Highway Research Board Special Report 73, The AASHO Road Test*, pp. 242-255.
- Bennett, Gary, 1999. Personal Correspondence.

FHWA, 1995. Highway Statistics 1995. U. S. Department of Transportation, Federal

Highway Administration.

- Hall, Kathleen, and Carlos Munoz, 1999. "Estimation of Present Serviceability Index from International Roughness Index," Transportation Research Record 1655, Transportation Research Board, pp. 93-99.
- Hindermann, W. L., 1968. "The Swing To Full-Depth," Asphalt Institute, Information Series No. 146.
- Hopkins, T. C., D. Q. Hunsucker, and T. Beckam, 1994. "Selection of Design Strengths of Untreated Soil Subgrades and Subgrades Treated with Cement and Hydrated Lime," *Transportation Research Record 1440*, Transportation Research Board, pp. 37-44.
- HRB, 1962. The AASHO Road Test Report 5, Pavement Research, Special Report 61E. Highway Research Board.

Huang, Yang H., 1993. Pavement Analysis and Design. Prentice Hall, New Jersey.

REFERENCES (CONTINUED)

Khosla, N. P., S. Sankaran, N. Kim, and Y. R. Kim, 1996. "A Comparative Study of

Performance of Different Designs for Flexible Pavements," Report No. FHWA/NC/97-004.

Lettier, J. A., and C. T. Metcalf, 1964. "Application of Design Calculations to Black Base

Leykauf, G., and W. J. Kawohl, 1972. "Structural Design of Full-Depth-Asphalt-

Pavements and Field Tests in Comparison with German Standardized Asphalt Pavements,"
Proceedings, Third International Conference on the Structural Design of Asphalt Pavements,
London, England, Vol. 1, pp. 1049-1060.

 Majidzadeh, Kamren, George Ives, and Faiz Makdisi, 1976. "Field and Laboratory
 Evaluation of Asphalt-Treated Base and Full-Depth Pavements in Ohio," *Transportation Research Record 595*, Transportation Research Board, pp. 41-47.

McGennis, Robert B., 1982. "Texas SDHPT Uses Full-Depth To Increase I-35 Capacity," *Asphalt*, Vol. 2, No. 2, pp. 6-7.

 Monismith, C. L., R. L. Terrel, and C. K. Chan, 1967. "Load Transmission
 Characteristics of Asphalt Treated Base Courses," *Proceedings, Second International Conference on the Structural Design of Asphalt Pavements*, University of Michigan.

NAPA, 1987. A Guide to Thickness Equivalencies for the Design of Asphalt Pavements, National Asphalt Pavement Association, Information Series 20.

Newnan, Donald G., 1996. Engineering Economic Analysis. Engineering Press, San Jose, California.

Pardee, Lyall A., 1972. "Full-Depth Asphalt Paving Can Save Construction Time," The American City, Vol. 87, No. 9, pp. 139+.

- Peterson, Dale E., 1985. *Life-Cycle Cost Analysis of Pavements*, Synthesis of Highway Practice 122, Transportation Research Board.
- Shook, James, and Bernard Kallas, 1982. "Ordway Colorado Experimental Base Project," Transportation Research Record 852, Transportation Research Board, pp. 1-8.

REFERENCES (CONTINUED)

- Temple, William H., and S. C. Shah, 1987. "Louisiana Experimental Base Project," Report No. FHWA/LA-87/192.
- Terrel, R. L., and C. L. Monismith, 1968. "Evaluation of Asphalt-Treated Base Course Materials," Proceedings, Association of Asphalt Paving Technologists, Technical Sessions, Minneapolis, Minnesota. Vol. 37, pp. 159-199.
- Uddin, Waheed, R. F. Carmichael III, and W. R. Hudson, 1985. "Life-Cycle Analysis for Pavement Management Decision making – State of the Art Review," Report No. FHWA-PA-85-010.
- Van Til, C. J., B. F. McCullough, B. A. Vallerga, and R. G. Hicks, 1972. "Evaluation of AASHO Interim Guides for the Design of Pavement Structures," National Cooperative Highway Research Program Report 128.
- Vyver, I. C. van der, and M. J. J. van Heerden, 1989. "Two Urban Pavement Rehabilitation Case Studies in Which Bituminous Bases Were Found to be the Optimum Solution," *Proceedings, Fifth Conference on Asphalt Pavements for South Africa (CAPSA 89)*, pp. 51-58.

Walls, III, James, and Michael Smith, 1998. Life-Cycle Cost Analysis in Pavement Design – Interim Technical Bulletin, Report No. FHWA-SA-98-079, Federal Highway Administration.

Woods, Mark, 1999. Personal Interview. September 17, 1999.

Yoder, E. J., and M. W. Witczak, 1975. "Bases and Subbases," Principals of Pavement Design, Second Edition.

Zimmerman, Kathryn A., 1997. "Guidelines for Using Economic Factors and Maintenance Costs in Life-Cycle Cost Analysis," Report No. SD96-08-F.

APPENDIX A

NET PRESENT WORTH AND

EQUIVALENT UNIFORM ANNUAL COST EXAMPLES

NET PRESENT WORTH ANALYSIS EXAMPLE

The following example shows how a NPW analysis is used to evaluate two alternatives. For the purpose of this example, the alternatives are for two different types of equipment for use in a factory.

Alternative #1:

Analysis Period = 10 years

Initial Cost = \$10,000

Annual Maintenance Costs =\$1,000

Major Repair Costs at year 5 = \$5,000

Salvage Value at year 10 = \$4,000

Figure A-1: Expenditure Flow Diagram for Alternative #1

 $NPW_{initial costs} = $10,000$

NPW_{annual maintenance} =
$$1,000[(1+i)^{n}-1]/[i(1+i)^{n}]$$

= $1,000[(1.04)^{9}-1]/[0.04(1.04)^{9}] = 1,000(7.435) = 7,435$
NPW_{major repair} = $5,000[1/(1+i)^{n}] = 5,000[1/(1.04)^{5}]$

$$= \$5,000(0.8219) = \$4,110$$
NPW_{salvage value} = -\$4,000[1/(1+i)ⁿ] = -\$4,000[1/(1.04)¹⁰]
$$= -\$4,000(0.6756) = -\$2,702$$

 $NPW = \Sigma NPW_i = \$10,000 + \$7,435 + \$4,110 - \$2702 = \$18,843$

Alternative #2

Analysis Period = 10 years

Initial Cost = \$15,000

Annual Maintenance Costs = \$600

Major Repair Costs at year 5 = \$2,000

Salvage Value at year 10 = \$5,000

Figure A-2: Expenditure Flow Diagram for Alternative #2

 $NPW_{initial costs} = $15,000$

NPW_{annual maintenance} =
$$600[(1+i)^{n}-1]/[i(1+i)^{n}]$$

= $600[(1.04)^{9}-1]/[0.04(1.04)^{9}] = 600(7.435) = 4,461$
NPW_{major repair} = $2,000[1/(1+i)^{n}] = 2,000[1/(1.04)^{5}]$

= \$2,000(0.8219) = \$1,644 $NPW_{salvage value} = -\$5,000[1/(1+i)^{n}] = -\$5,000[1/(1.04)^{10}]$ = -\$5,000(0.6756) = -\$3,378 $NPW = \Sigma NPW_{i} = \$15,000 + \$4,461 + \$1,644 - \$3,378 = \$17,727$

When comparing the NPW of each alternative, it can be seen that although alternative #2 has a higher initial cost it has a lower NPW, which corresponds to a lower cost over the life of the equipment. Therefore, if the decision is based solely on economics, the factory should purchase the equipment in alternative #2.

EQUIVALENT UNIFORM ANNUAL COST ANALYSIS EXAMPLE

Consider the same alternatives as in the Net Present Worth Analysis Example. The two alternatives can also be compared by converting all costs to the present time and then spreading all of the costs of each alternative over the analysis period and summing them.

Alternative #1

$$\begin{split} & \text{EUAC}_{\text{initial costs}} = \$10,000[i(1+i)^n]/[(1+i)^n - 1] \\ & = \$10,000[0.04(1.04)^{10}]/[(1.04)^{10} - 1] = \$10,000(0.1233) = \$1,233 \\ & \text{EUAC}_{\text{annual maintenance}} = \$1,000[(1+i)^n - 1]/[i(1+i)^n][[i(1+i)^n]/[(1+i)^n - 1]] \\ & = \$1,000[(1.04)^9 - 1]/[0.04(1.04)^9][0.04(1.04)^{10}]/[(1.04)^{10} - 1]] \\ & = \$1,000(7.435)(0.1233) = \$917 \\ & \text{EUAC}_{\text{major repair}} = \$5,000[1/(1+i)^n][i(1+i)^n]/[(1+i)^n - 1] \\ & = \$5,000[1/(1.04)^5][0.04(1.04)^{10}]/[(1.04)^{10} - 1] \\ & = \$5,000(0.8219)(0.1233) = \$507 \end{split}$$

EUAC_{salvage value} = -\$4,000[1/(1+i)ⁿ][i(1+i)ⁿ]/[(1+i)ⁿ-1]
= -\$4,000[1/(1.04)¹⁰] [0.04(1.04)¹⁰]/[(1.04)¹⁰-1]
= \$4,000(0.6756)(0.1233) = \$333
EUAC =
$$\Sigma$$
EUAC_i = \$1,233 + \$917 + \$507 - \$333 = \$2,324

Alternative #2

$$\begin{split} & \text{EUAC}_{\text{initial costs}} = \$15,000[i(1+i)^n]/[(1+i)^n - 1] \\ &= \$15,000[0.04(1.04)^{10}]/[(1.04)^{10} - 1] = \$15,000(0.1233) = \$1,850 \\ & \text{EUAC}_{\text{annual maintenance}} = \$600[(1+i)^n - 1]/[i(1+i)^n][[i(1+i)^n]/[(1+i)^n - 1] \\ &= \$600[(1.04)^9 - 1]/[0.04(1.04)^9][0.04(1.04)^{10}]/[(1.04)^{10} - 1] \\ &= \$600(7.435)(0.1233) = \$550 \\ & \text{EUAC}_{\text{major repair}} = \$2,000[1/(1+i)^n] [i(1+i)^n]/[(1+i)^n - 1] \\ &= \$2,000[1/(1.04)^5][0.04(1.04)^{10}]/[(1.04)^{10} - 1] \\ &= \$2,000(0.8219)(0.1233) = \$203 \\ & \text{EUAC}_{\text{salvage value}} = -\$5,000[1/(1+i)^n][i(1+i)^n]/[(1+i)^n - 1] \\ &= -\$5,000[1/(1.04)^{10}] [0.04(1.04)^{10}]/[(1.04)^{10} - 1] \\ &= \$5,000(0.6756)(0.1233) = \$417 \\ & \text{EUAC} = \$E\text{UAC}_i = \$1,850 + \$550 + \$203 - \$417 = \$2,186 \end{split}$$

When comparing the EUAC of each alternative, it can be seen that although alternative #2 has a higher initial cost it has a lower EUAC, which corresponds to a lower cost over the life of the equipment. Therefore, if the decision is based solely on economics, the factory should purchase the equipment in alternative #2.

APPENDIX B

SITE SUMMARIES

HIGHWAY 82

Highway 82 Between Magnolia and El Dorado, Arkansas Columbia County May 24, 1999

General site conditions

This site was chosen for on-site evaluation for the following reasons:

- The highway was widened to three lanes (alternating east and west bound) with full depth asphalt.
- Highway 82 allowed a direct comparison between the performance of full depth asphalt and a pavement section using crushed stone base course (class 5) that existed in original portion of Highway 82.

Items that were present at these sampling locations that may not allow for an absolute comparison between full depth asphalt and crushed stone base course include:

• Traffic distribution may not be assumed to be equal in the full depth asphalt widening sections and the crushed stone sections.

Highway 82 was sampled at section 4, log mile 11.03 (#1) and section 4, log mile 8.34 (#2). These log miles represent portions of Highway 82 that had been widened with full depth asphalt on the outside of the existing lanes. Location #1 was widened on the south side of the existing road. Location #2 was widened on the north side of the existing road.

Figure B-2: Highway 82 #1 Borings

Figure B-3: Highway 82 #2 Borings

The widening job was built in 1990 under AHTD Job # R70050. The design year was 2009. The 1989 ADT was 2760. The expected 2009 ADT was 4100. The percent trucks from the cover sheet was 15.33%.

From AHTD traffic counts at Locations #1 and #2, the estimated 1989 ADT was 3000 and the 2009 expected ADT is 6000.

For Location #1, rutting data provided by AHTD from March 1, 1999 show a 0.118 inch rut in the left wheelpath and a 0.118 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #1 show a 0.134 inch rut in the left wheelpath and a 0.133 inch rut in the right wheelpath.

For Location #1, IRI data provided by AHTD from March 1, 1999 show a 63 inch/mile IRI in the left wheelpath and a 62 inch/mile IRI in the right wheelpath.
Averages for the 1 mile sections on either side of Location #1 show a 91 inch/mile IRI in the left wheelpath and a 100 inch/mile IRI in the right wheelpath.

For Location #2, rutting data provided by AHTD from March 1, 1999 show a 0.157 inch rut in the left wheelpath and a 0.118 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #2 show a 0.145 inch rut in the left wheelpath and a 0.140 inch rut in the right wheelpath.

For Location #2, IRI data provided by AHTD from March 1, 1999 show a 72 inch/mile IRI in the left wheelpath and a 77 inch/mile IRI in the right wheelpath. Averages for the 1 mile sections on either side of Location #2 show a 93 inch/mile IRI in the left wheelpath and a 103 inch/mile IRI in the right wheelpath.

Highway 167 South of El Dorado, Arkansas Union County May 25, 1999

General site conditions

This site was chosen for on-site evaluation for the following reasons:

- The highway was in the process of being widened from two to four lanes with the added lanes composed of full depth asphalt.
- Highway 167 allowed a direct comparison between the performance of full depth asphalt and a pavement section using crushed stone base course (class 5) that existed in original portion of Highway 167.

Items that were present at these sampling locations that may not allow for an absolute comparison between full depth asphalt and crushed stone base course include:

- Some portions of the pavement section that were sampled had only been driven on during stage construction. Therefore no accurate traffic data is available for this portion of the highway.
- The full depth asphalt sections were recently completed.
- Portions of the alignment of the roadway were changed during construction of some of the four lane sections of the widening.

Highway 167 was sampled at section 1, log mile 3.44 (#1), section 1, log mile 3.42 (#2), and section 1, log mile 12.15 (#3). These log miles represent portions of Highway 167 that had been widened with full depth asphalt on the south bound portion outside of the existing lanes.

For Location #1, rutting data provided by AHTD from March 1, 1999 show a 0.118 inch rut in the left wheelpath and a 0.118 inch rut in the right wheelpath.

Averages for the 1 mile sections on either side of Location #1 show a 0.129 inch rut in the left wheelpath and a 0.162 inch rut in the right wheelpath.

For Location #2, rutting data provided by AHTD from March 1, 1999 show a 0.079 inch rut in the left wheelpath and a 0.118 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #2show a 0.129 inch rut in the left wheelpath and a 0.162 inch rut in the right wheelpath.

For Location #3, rutting data provided by AHTD from March 1, 1999 show a 0.079 inch rut in the left wheelpath and a 0.118 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #3show a 0.129 inch rut in the left wheelpath and a 0.116 inch rut in the right wheelpath.

Highway 15 East of El Dorado, Arkansas Bradley County May 25, 1999

General site conditions

This site was chosen for on-site evaluation for the following reasons:

• Hwy 15 was constructed with a crushed stone base course.

Items that were present at these sampling locations that may not allow for an absolute comparison between full depth asphalt and crushed stone base course include:

• Hwy 15 was constructed with a crushed stone base course. There does not appear to be a good companion section using full-depth asphalt construction.

Highway 15 was sampled at section 3, log mile 1.00. This location represents a portion of Highway 15 that was constructed with a crushed stone base course.

This was built under AHTD Job # R70071. The design year was 2011. The 1991 ADT was 630. The expected 2011 ADT was 1210. The percent trucks from the cover sheet was 19.71%. From a different AHTD database, the percent trucks is 49%.

For Location #1, rutting data provided by AHTD from March 1, 1999 show a 0.157 inch rut in the left wheelpath and a 0.079 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #1 show a 0.124 inch rut in the left wheelpath and a 0.150 inch rut in the right wheelpath.

HIGHWAY 7 SPUR

General site conditions

This site was chosen for on-site evaluation for the following reasons:

- This section of Highway 7 spur was a bridge approach widened with full depth asphalt.
- Highway 7 spur allowed a direct comparison between the performance of full depth asphalt and a pavement section with crushed stone base course (class 5).

Items that were present at these sampling locations that may not allow for an absolute comparison between full depth asphalt and crushed stone base course include:

• The original pavement section consisted of 5 inches of asphalt, approximately 1.0 feet of class 5 base course, and 6 inches of fill material on top of a concrete pavement. The presence of the concrete pavement below the existing pavement section does not meet our requirements for a suitable test section.

Highway 7 spur was sampled at section 2s, log mile 0.70. This log mile represents a portion of Highway 7 spur that had been widened for the bridge approach.

For Location #1, rutting data provided by AHTD from March 1, 1999 show a 0.079 inch rut in the left wheelpath and a 0.118 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #1 show a 0.130 inch rut in the left wheelpath and a 0.136 inch rut in the right wheelpath.

Highway 79 Outside of El Dorado, Arkansas Calhoun County May 26, 1999

General site conditions

This site was chosen for on-site evaluation for the following reasons:

• This portion of Hwy 79 was constructed with a crushed stone base course

Items that were present at these sampling locations that may not allow for an absolute comparison between full depth asphalt and crushed stone base course include:

• There does not appear to be a good companion section allowing a direct comparison between the performance of full-depth asphalt with a pavement section using a crushed stone base course.

Highway 79 was sampled at section 5, log mile 5.64 (#1 and #2). This log mile represents a portion of Highway 79 that was constructed with a crushed stone base course.

Figure B-8: Highway 79 #1 Borings

Figure B-9: Highway 79 #2 Borings

This job was built in 1991 under AHTD Job # R70016. The design year was 2010. The 1990 ADT was 3930. The expected 2010 ADT was 5955. The percent trucks from the cover sheet was 16.79%. From another AHTD database, the percent trucks was 16%.

From AHTD traffic counts, the estimated 1990 ADT was 3400 and the expected 2010 ADT is 5100.

For Locations #1 and #2, rutting data provided by AHTD from April 1, 1999 show a 0.096 inch rut in the left wheelpath and a 0.197 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Locations #1 and #2 show a 0.096 inch rut in the left wheelpath and a 0.130 inch rut in the right wheelpath.

For Locations #1 and #2, IRI data provided by AHTD from April 1, 1999 show a 67 inch/mile IRI in the left wheelpath and a 72 inch/mile IRI in the right wheelpath. Averages for the 1 mile sections on either side of Locations #1 and #2 show a 77 inch/mile IRI in the left wheelpath and a 81 inch/mile IRI in the right wheelpath.

OTTER CREEK ROAD

General site conditions

This site was chosen for on-site evaluation for the following reasons:

• The sampled section of Otter Creek Road connecting the original Otter Creek Road to Highway 5 was constructed with full depth asphalt.

Figure B-10: Pulaski Count

• The sampled section of Otter Creek Road would provide a direct comparison of a full depth asphalt section to the existing Otter Creek Road pavement section located to the east of the sampled site.

Items that were present at these sampling locations that may not allow for an absolute comparison between full depth asphalt and crushed stone base course include:

• The original section of Otter Creek Road was found to be composed of concrete. The comparison between full depth asphalt and concrete pavement sections is outside of the scope of this project.

Otter Creek Road is not a state highway and therefore has no section or log mile designation. The site sampled represents a portion of Otter Creek Road that had been constructed with full depth asphalt. Additionally, the section of Otter Creek Road sampled was bordered on the east and the west by box culverts.

Highway 165 East of Humnoke, Arkansas Lonoke County June 28, 1999

General site conditions

This site was chosen for on-site evaluation for the following reasons:

- The highway was widened to four lanes with full depth asphalt.
- Highway 165 allowed a direct comparison between the performance of full depth asphalt and a pavement section using crushed stone base course (class 5) that existed in original portion of Highway 165.

Items that were present at these sampling locations that may not allow for an absolute comparison between full depth asphalt and crushed stone base course include:

• Traffic distribution may not be assumed to be equal in the full depth asphalt widening sections and the crushed stone sections because only the shoulders were widened leaving only a small portion of the lane as full-depth.

Highway 165 was sampled at section 8, log mile 0.44 (#1). This log mile represents a portion of Highway 165 that had been widened with full depth asphalt on the outside of the westbound lane.

The widening job was built under AHTD Job # R60119. The design year was 2014. The 1994 ADT was 2950. The expected 2014 ADT was 4200. The percent trucks from the cover sheet was 13.14%.

For Location #1, rutting data provided by AHTD from March 1, 1999 show a 0.039 inch rut in the left wheelpath and a 0.000 inch rut in the right wheelpath.

Averages for the 1 mile sections on either side of Location #1 show a 0.063 inch rut in the left wheelpath and a 0.036 inch rut in the right wheelpath.

Highway 49 South of Paragould, Arkansas Greene County June 29, 1999

General site conditions

This site was chosen for on-site evaluation for the following reasons:

- The highway was widened to four lanes with full depth asphalt.
- Highway 49 allowed a direct comparison between the performance of full depth asphalt and a pavement section using crushed stone base course (class 7) that existed in original portion of Highway 49.

Items that were present at these sampling locations that may not allow for an absolute comparison between full depth asphalt and crushed stone base course include:

- Traffic distribution may not be assumed to be equal in the full depth asphalt widening sections and the crushed stone sections.
- The full depth asphalt sections and the original crushed stone base course sections were not completed at the same time.

Highway 49 was sampled at section 2, log mile 23.51 (#1) and section 2, log mile 20.21 (#2). Location #1 represented a portion of Highway 49 that was in the process of being widened on the west side of the existing road. Location #2 represented a portion of Highway 49 that had been widened with full depth asphalt on the outside of the existing lanes.

Figure B-13: Highway 49 #1 Borings

Figure B-14: Highway 49 #2 Borings

Location #1 was built under AHTD Job # R00081. The design year was 2014. The 1992 ADT was 7525. The expected 2014 ADT was 11750. The percent trucks from the cover sheet was 11%.

From AHTD traffic counts at Location #1, the estimated 1992 ADT was 7000 and the expected 2014 ADT is 13500.

Location #2 was built under AHTD Job # R00071. The design year was 2013. The 1993 ADT was 10000. The expected 2013 ADT was 15700. The percent trucks from the cover sheet was 5.84%.

From AHTD traffic counts at Location #2, the estimated 1993 ADT was 7500 and the expected 2013 ADT is 12200.

For Location #1, rutting data provided by AHTD from March 1, 1999 show a 0.236 inch rut in the left wheelpath and a 0.276 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #1 show a 0.201 inch rut in the left wheelpath and a 0.239 inch rut in the right wheelpath.

For Location #1, IRI data provided by AHTD from March 1, 1999 show a 219 inch/mile IRI in the left wheelpath and a 103 inch/mile IRI in the right wheelpath. Averages for the 1 mile sections on either side of Location #1 show a 150 inch/mile IRI in the left wheelpath and a 104 inch/mile IRI in the right wheelpath.

For Location #2, rutting data provided by AHTD from March 1, 1999 show a 0.157 inch rut in the left wheelpath and a 0.354 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #2 show a 0.216 inch rut in the left wheelpath and a 0.292 inch rut in the right wheelpath.

For Location #2, IRI data provided by AHTD from March 1, 1999 show a 306 inch/mile IRI in the left wheelpath and a 159 inch/mile IRI in the right wheelpath. Averages for the 1 mile sections on either side of Location #2 show a 136 inch/mile IRI in the left wheelpath and a 97 inch/mile IRI in the right wheelpath.

HIGHWAY 412 (#1-#2)

General site conditions

This site was chosen for on-site evaluation for the following reasons:

- The highway was widened to four lanes with full depth asphalt on the westbound lanes as part of the bridge approaches.
- Highway 412 allowed a direct comparison between the performance of full depth asphalt and a pavement section using crushed stone base course (class 7) that existed in original portion of Highway 82.

Items that were present at these sampling locations that may not allow for an absolute comparison between full depth asphalt and crushed stone base course include:

• It was found that the existing pavement section consisted of an asphalt surface, asphalt sand, asphalt, and class 7 base, all overlaying an original concrete pavement. This section falls outside of the scope of this project.

Highway 412 was sampled at section 7, log mile 7.61 (#1) and section 7, log mile 7.28 (#2). Location #1 represents a portion of Highway 412 that had been widened with full depth asphalt on the north side of the existing lanes. Location #2 represented a portion of Highway 412 that had not been widened.

For Location #1, rutting data provided by AHTD from April 1, 1994 show a 0.276 inch rut in the left wheelpath and a 0.315 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #1 show a 0.259 inch rut in the left wheelpath and a 0.290 inch rut in the right wheelpath.

For Location #2, rutting data provided by AHTD from April 1, 1994 show a 0.276 inch rut in the left wheelpath and a 0.276 inch rut in the right wheelpath.

Averages for the 1 mile sections on either side of Location #2 show a 0.259 inch rut in the left wheelpath and a 0.301 inch rut in the right wheelpath.

Highway 270 East of Hot Springs, Arkansas Garland County July 6, 1999

General site conditions

This site was chosen for on-site evaluation for the following reasons:

- The highway was widened to four lanes using full depth asphalt in some portions and crushed stone base in other sections.
- Highway 270 allowed a direct comparison between the performance of full depth asphalt and a pavement section using crushed stone base course (class 5) that existed in original portion of Highway 270.
- Traffic distribution may be assumed to be equal in the full depth asphalt widening sections and the crushed stone widening sections.

There were no items that were present at these sampling locations that may not allow for an absolute comparison between full depth asphalt and crushed stone base course.

Highway 270 was sampled at section 6, log mile 8.6 (#1) and section 6, log mile 6.47 (#2). Location #1 represents a portion of Highway 270 that had been widened with crushed stone base on the outside of the existing lanes. Location #2 represents a portion of Highway 270 that had been widened with full depth asphalt on the outside of the existing lanes.

Figure B-17: Highway 270 #1 Borings

Figure B-18: Highway 270 #2 Borings

Location #1 was built in 1984 under AHTD Job # 60116. The design year was 2002. The 1982 ADT was 6650. The expected 2002 ADT was 10400. The percent trucks from the cover sheet was 12%.

From AHTD traffic counts at Location #1, the estimated 1982 ADT was 4200 and the expected 2002 ADT is 14200.

Location #2 was built in 1981 under AHTD Job # 60115. The design year was 1999. The 1979 ADT was 8940. The expected 1999 ADT was 18560. The percent trucks from the cover sheet was 8.8%.

From AHTD traffic counts at Location #2, the estimated 1979 ADT was 8200 and the expected 1999 ADT is 11000.

For Location #1, rutting data provided by AHTD from March 1, 1999 show a 0.079 inch rut in the left wheelpath and a 0.118 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #1 show a 0.129 inch rut in the left wheelpath and a 0.116 inch rut in the right wheelpath.

For Location #1, IRI data provided by AHTD from March 1, 1999 show a 61 inch/mile IRI in the left wheelpath and a 87 inch/mile IRI in the right wheelpath. Averages for the 1 mile sections on either side of Location #1 show a 121 inch/mile IRI in the left wheelpath and a 155 inch/mile IRI in the right wheelpath.

For Location #2, rutting data provided by AHTD from March 1, 1999 show a 0.079 inch rut in the left wheelpath and a 0.079 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #2 show a 0.126 inch rut in the left wheelpath and a 0.171 inch rut in the right wheelpath.

For Location #2, IRI data provided by AHTD from March 1, 1999 show a 214 inch/mile IRI in the left wheelpath and a 267 inch/mile IRI in the right wheelpath. Averages for the 1 mile sections on either side of Location #2 show a 181 inch/mile IRI in the left wheelpath and a 225 inch/mile IRI in the right wheelpath.

Highway 65 South of Greenbrier, Arkansas Faulkner County July 7, 1999 and August 9, 1999

General site conditions

This site was chosen for on-site evaluation for the following reasons:

- The highway was widened to four lanes using full depth asphalt in some portions and crushed stone base in other sections.
- Highway 65 allowed a direct comparison between the performance of full depth asphalt and a pavement section using crushed stone base course (class 7) that existed in original portion of Highway 65.
- Traffic distribution may be assumed to be equal in the full depth asphalt widening sections and the crushed stone widening sections.

There were no items that were present at these sampling locations that may not allow for an absolute comparison between full depth asphalt and crushed stone base course.

Highway 65 was sampled at section 9, log mile 17.79 (#1), section 9, log mile 11.79 (#2 and #10), section 9, log mile 13.75 (#11), and section 9, log mile 17.2 (#12). Locations #1 and #11 represent a portion of Hwy 65 that was constructed using a crushed stone base course. Locations #2, #10, and #12 represent portions of Hwy 65 that were widened using full-depth asphalt.

Figure B-20: Highway 65 #1 Borings

Figure B-21: Highway 65 #2 Borings

Figure B=22: Highway 65 #10 Borings

Figure B-23: Highway 65 #11 Borings

Figure B-24: Highway 65 #12 Borings

Locations #1 and #12 were built in 1987 under AHTD Job # 8827. The design year was 2004. The 1984 ADT was 11320. The expected 2004 ADT was 19600. The percent trucks from the cover sheet was 8%. From another AHTD database, the percent trucks is 17%.

From AHTD traffic counts at Locations #1 and #12, the estimated 1984 ADT was 17000 and the expected 2004 ADT is 21000.

Locations #2, #10, and #11 were built in 1988 under AHTD Job # R80010. The design year was 2006. The 1986 ADT was 11095. The expected 2006 ADT was 18750. The percent trucks from the cover sheet was 11%. From another AHTD database, the percent trucks is 17%.

From AHTD traffic counts at Locations #2, #10, and #11 the estimated 1986 ADT was 11000 and the expected 2006 ADT is 26000.

For Location #1, rutting data provided by AHTD from July 1, 1999 show a 0.079 inch rut in the left wheelpath and a 0.118 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #1 show a 0.095 inch rut in the left wheelpath and a 0.126 inch rut in the right wheelpath.

For Location #1, IRI data provided by AHTD from July 1, 1999 show a 68 inch/mile IRI in the left wheelpath and a 77 inch/mile IRI in the right wheelpath. Averages for the 1 mile sections on either side of Location #1 show a 71 inch/mile IRI in the left wheelpath and a 93 inch/mile IRI in the right wheelpath.

For Locations #2 and #10, rutting data provided by AHTD from July 1, 1999 show a 0.236 inch rut in the left wheelpath and a 0.433 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Locations #2 and

#10 show a 0.075 inch rut in the left wheelpath and a 0.227 inch rut in the right wheelpath.

For Locations #2 and #10, IRI data provided by AHTD from July 1, 1999 show a 141 inch/mile IRI in the left wheelpath and a 214 inch/mile IRI in the right wheelpath. Averages for the 1 mile sections on either side of Locations #2 and #10 show a 102 inch/mile IRI in the left wheelpath and a 121 inch/mile IRI in the right wheelpath.

For Location #11, rutting data provided by AHTD from July 1, 1999 show a 0.039 inch rut in the left wheelpath and a 0.236 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #11 show a 0.083 inch rut in the left wheelpath and a 0.205 inch rut in the right wheelpath.

For Location #11, IRI data provided by AHTD from July 1, 1999 show a 172 inch/mile IRI in the left wheelpath and a 262 inch/mile IRI in the right wheelpath. Averages for the 1 mile sections on either side of Location #11 show a 93 inch/mile IRI in the left wheelpath and a 136 inch/mile IRI in the right wheelpath.

For Location #12, rutting data provided by AHTD from July 1, 1999 show a 0.079 inch rut in the left wheelpath and a 0.157 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #12 show a 0.096 inch rut in the left wheelpath and a 0.125 inch rut in the right wheelpath.

For Location #12, IRI data provided by AHTD from July 1, 1999 show a 91 inch/mile IRI in the left wheelpath and a 95 inch/mile IRI in the right wheelpath. Averages for the 1 mile sections on either side of Location #12 show a 69 inch/mile IRI in the left wheelpath and a 83 inch/mile IRI in the right wheelpath.

HIGHWAY 71 (#1)

Highway 71 South of Fort Smith, Arkansas Sebastian County July 8, 1999

General site conditions

This site was chosen for on-site evaluation for the following reasons:

- The divided highway was extended to four lanes further south out of Fort Smith. Portions of the widening were done with full depth asphalt. The new lanes were constructed with crushed stone base.
- Highway 71 allowed a direct comparison between the performance of full depth asphalt and a pavement section using crushed stone base course (class 7) that existed in original portion of Highway 71.

Items that were present at these sampling locations that may not allow for an absolute comparison between full depth asphalt and crushed stone base course include:

- It was found that the full depth asphalt section was in a bad location to sample and most likely would not have been useful because it had not seen acceptable traffic loading.
- Traffic distribution may not be assumed to be equal in the full depth asphalt widening sections and the crushed stone sections.

Highway 71 was sampled at section 13, log mile 7.84 (#1). This location represents a portion of Highway 71 that had been constructed with crushed stone base.

This location was built under AHTD Job # 40103. The design year was 2014. The 1994 ADT was 8100. The expected 2014 ADT was 11600. The percent trucks from the cover sheet was 10%.

For Location #1, rutting data provided by AHTD from August 1, 1999 show a 0.118 inch rut in the left wheelpath and a 0.197 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #1 show a 0.092 inch rut in the left wheelpath and a 0.146 inch rut in the right wheelpath.

HIGHWAY 71 (#10-#13)

General site conditions

This site was chosen for on-site evaluation for the following reasons:

• This portion of Hwy 71 was constructed with full-depth asphalt.

Items that were present at these sampling locations that may not allow for an absolute comparison between full depth asphalt and crushed stone base course include:

- There does not appear to be a good companion section allowing for a direct comparison of full-depth asphalt with a pavement section using a crushed stone base course.
- Some of the sites sampled are on what is now Highway 540, so the exact location is not known.

Highway 71 was sampled at section 17, log mile 6.99 (#10), section _____, log mile _____ (#11), (Hwy 540) section 4, log mile 65.33 (#12), and (Hwy 540) section 4, log mile 63.83 (#13). All 4 locations represent portions of Hwy 71 that were constructed with full-depth asphalt.

Location #10 was built under AHTD Job # 4892. The design year was 2003. The 1983 ADT was 19600. The expected 2003 ADT was 42300. The percent trucks from the cover sheet was 18%. From a different AHTD database, the percent trucks is 11%.

Location #11 was built under AHTD Job # ____. The design year was ____. The _____ ADT was ____. The expected _____ ADT was ____. The percent trucks from the cover sheet was _____%.

Location #12 was built under AHTD Job # _____. The design year was _____. The _____ ADT was _____. The expected _____ ADT was _____. The percent trucks from the cover sheet was ____%.

Location #13 was built under AHTD Job # ____. The design year was ____. The _____ADT was ____. The expected _____ADT was ____. The percent trucks from the cover sheet was ___%.

For Location #10, rutting data provided by AHTD from August 1, 1999 show a 0.157 inch rut in the left wheelpath and a 0.157 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #10 show a 0.181 inch rut in the left wheelpath and a 0.189 inch rut in the right wheelpath.

HIGHWAY 412 (#10-#15)

General site conditions

This site was chosen for on-site evaluation for the following reasons:

- Portions of Hwy 412 were constructed with a crushed stone base course.
- Portions of Hwy 412 were widened with full-depth asphalt.
- This section of Hwy 412 allows a direct comparison between the performance of full-depth asphalt and a pavement using a crushed stone base course.

There were no items that were present at these sampling locations that may not allow for an absolute comparison between full depth asphalt and crushed stone base course.

Highway 412 was sampled at section 2, log mile $0.95 \ (\#10)$, section 2, log mile 2.08 $\ (\#11)$, section 2, log mile 4.05 $\ (\#12)$, section 2, log mile 6.27 $\ (\#13)$, section 2, log mile 7.55 $\ (\#14)$, and section 2, log mile 8.63 $\ (\#15)$.

Figure B-28: Highway 412 #10 Borings

Figure B-29 Highway 412 #1. Borings

Figure B-30 Highway 412 #12 Borings

Figure B-31 Highway 412 #13 Borings

Figure B-32: Highway 412 #14 Borings

Figure B-33: Highway 412 #15 Borings

Locations #10 and #11 represent a portion of Hwy 412 that is divided and the eastbound direction was constructed with a crushed stone base course. Locations #12, #13, and #14 represent portions of Hwy 412 that were widened on the outsides of the existing lanes with full-depth asphalt. Location #15 represents a portion of Hwy 412 that was constructed with a crushed stone base and showed severe rutting.

Locations #10 and #11 were built in 1994 under AHTD Job # 1675. The design year was 2013. The 1993 ADT was 7195. The expected 2013 ADT was 12225. The percent trucks from the cover sheet was 19%. From a different AHTD database, the percent trucks is 17%.

From AHTD traffic counts at Locations #10 and #11, the estimated 1993 ADT was 7000 and the expected 2013 ADT is 13200.

Locations #12 and #13 were built in 1994 under AHTD Job # 40112. The design year was 2013. The 1993 ADT was 8950. The expected 2013 ADT was 14040. The percent trucks from the cover sheet was 16%. From a different AHTD database, the percent trucks is 17%.

From AHTD traffic counts at Locations #12 and #13, the estimated 1993 ADT was 10000 and the expected 2013 ADT is 20000.

Location #14 was built in 1987 under AHTD Job # R40016. The design year was 2006. The 1986 ADT was 10425. The expected 2006 ADT was 18035. The percent trucks from the cover sheet was 18%. From a different AHTD database, the percent trucks is 17%.

From AHTD traffic counts at Location #14, the estimated 1986 ADT was 10000 and the expected 2006 ADT is 24000.

Location #15 was built under AHTD Job # ____. The design year was ____. The _____ ADT was ____. The expected _____ ADT was ____. The percent trucks from the cover sheet was ____%.

For Location #10, rutting data provided by AHTD from August 1, 1999 show a 0.118 inch rut in the left wheelpath and a 0.118 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #10 show a 0.107 inch rut in the left wheelpath and a 0.129 inch rut in the right wheelpath.

For Location #10, IRI data provided by AHTD from August 1, 1999 show a 84 inch/mile IRI in the left wheelpath and a 68 inch/mile IRI in the right wheelpath. Averages for the 1 mile sections on either side of Location #10 show a 82 inch/mile IRI in the left wheelpath and a 76 inch/mile IRI in the right wheelpath.

For Location #11, rutting data provided by AHTD from August 1, 1999 show a 0.118 inch rut in the left wheelpath and a 0.118 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #11 show a 0.108 inch rut in the left wheelpath and a 0.127 inch rut in the right wheelpath.

For Location #11, IRI data provided by AHTD from August 1, 1999 show a 84 inch/mile IRI in the left wheelpath and a 63 inch/mile IRI in the right wheelpath. Averages for the 1 mile sections on either side of Location #11 show a 76 inch/mile IRI in the left wheelpath and a 72 inch/mile IRI in the right wheelpath.

For Location #12, rutting data provided by AHTD from August 1, 1999 show a 0.079 inch rut in the left wheelpath and a 0.118 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #12 show a 0.090 inch rut in the left wheelpath and a 0.131 inch rut in the right wheelpath.

For Location #12, IRI data provided by AHTD from August 1, 1999 show a 54 inch/mile IRI in the left wheelpath and a 72 inch/mile IRI in the right wheelpath. Averages for the 1 mile sections on either side of Location #12 show a 63 inch/mile IRI in the left wheelpath and a 63 inch/mile IRI in the right wheelpath.

For Location #13, rutting data provided by AHTD from August 1, 1999 show a 0.079 inch rut in the left wheelpath and a 0.118 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #13 show a 0.105 inch rut in the left wheelpath and a 0.145 inch rut in the right wheelpath.

For Location #13, IRI data provided by AHTD from August 1, 1999 show a 76 inch/mile IRI in the left wheelpath and a 70 inch/mile IRI in the right wheelpath. Averages for the 1 mile sections on either side of Location #13 show a 87 inch/mile IRI in the left wheelpath and a 99 inch/mile IRI in the right wheelpath.

For Location #14, rutting data provided by AHTD from August 1, 1999 show a 0.157 inch rut in the left wheelpath and a 0.157 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #14 show a 0.134 inch rut in the left wheelpath and a 0.217 inch rut in the right wheelpath.

For Location #14, IRI data provided by AHTD from August 1, 1999 show a 70 inch/mile IRI in the left wheelpath and a 73 inch/mile IRI in the right wheelpath. Averages for the 1 mile sections on either side of Location #14 show a 102 inch/mile IRI in the left wheelpath and a 107 inch/mile IRI in the right wheelpath.

For Location #15, rutting data provided by AHTD from August 1, 1999 show a 0.787 inch rut in the left wheelpath and a 0.394 inch rut in the right wheelpath. Averages for the 1 mile sections on either side of Location #15 show a 0.175 inch rut in the left wheelpath and a 0.252 inch rut in the right wheelpath.

For Location #15, IRI data provided by AHTD from August 1, 1999 show a 413 inch/mile IRI in the left wheelpath and a 282 inch/mile IRI in the right wheelpath. Averages for the 1 mile sections on either side of Location #15 show a 118 inch/mile IRI in the left wheelpath and a 127 inch/mile IRI in the right wheelpath.

APPENDIX C

SITES AND SAMPLES

Table C-1: Test Site Information for Highway 82

Date Sampled	Route and Section	Location #	Log Mile	County	Description					
					of Location					
5/24/1000	Highway 92 Section 4	1	11.02	Columbia	2 lanes Eastbound,					
5/24/1999	Ingliway 82 Section 4	1	11.05		1 lane Westbound					
Description of Boreholes										
Borehole Location		Sample #	Depth	PR	Sample Type	Material Type				
B-1	Eastbound, outside lane,	None								
	outside wheelpath	None								
B-2	Eastbound, outside lane,	1	1'-3'	1.75	Shelby Tube	Subgrade				
	center of lane	2	3'-5'	1.5	Shelby Tube	Subgrade				
В-3	Eastbound, outside lane,	1	1'-1.5'	N/A	Bag	Subgrade				
	inside wheelpath									
B-4	Eastbound, off of shoulder	1	0.5'-3'	N/A	Bag	Subgrade				
B-5	Westbound, center of lane	1	2'-4'	1.5	Shelby Tube	Subgrade				

Date Sampled	Route and Section	Location #	Log Mile	County	Description						
					of Location						
5/24/1999	Highway 82 Section 4	2	8.34	Columbia	1 lane Eastbound,						
					2 lanes Westbound						
Description of Boreholes											
Borehole Location		Sample #	Depth	PR	Sample Type	Material Type					
B-1	Westbound, outside lane,	None									
	outside wheelpath	TONE									
B-2	Westbound, outside lane,	1	1'-3'	2-2.75	Shelby Tube	Subgrade					
	center of lane	2	3'-5'	4.5+	Shelby Tube	Subgrade					
В-3	Westbound, outside lane,	None									
	inside wheelpath	none									
B-4		1	0.5'-4'	N/A	Bag	Subgrade					
	Westbound, off of	2	4'-6'	N/A	Bag	Subgrade					
	shoulder	3	0.5'-4'	N/A	Bag	Subgrade					
		4	4'-6'	N/A	Bag	Subgrade					
B-5	Eastbound, center of lane	1	2'-4'	4-4.5	Shelby Tube	Subgrade					
Date	Route and Section	Location #	Log Mile	County	Des	scription					
-----------	--	------------	-------------------	---------	--------------------	--------------------	--	--			
Sampled					of Location						
					1 lane Northbound,						
5/25/1999	Highway 167 Section 1	1	3.44	Union	1 lane	Eastbound,					
					2 lanes for s	taged construction					
	Description of Boreholes										
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type					
	Northbound right land of staged	1	9"-1.5'	N/A	Bag	Base					
B-1	construction wheelpath	2	1.5'-3.5'	4.5+	Shelby Tube	Subgrade					
	construction, wheelpath	3	3.5'-5'	4.5+	Shelby Tube	Subgrade					
B-2	Northbound, left lane of staged construction, center of lane	1	14"-28"	N/A	Bag	Base					
Date	Doute and Souther	Teestion #	Les Mile	Country	Des	scription					
Sampled	npled Route and Section Location # Log Mile	Log Mille	Log Mile County	ofl	Location						

Table C-2: Test Site Information for Highway 167

Date Sampled	Route and Section	Location #	Log Mile	County	Deg of I	scription Location
5/25/1999	Highway 167 Section 1	2	3.42	Union	2 lanes 2 lanes	Northbound, Southbound
	De	scription of Bo	reholes	•	•	
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type
B-1	Southbound, outside lane, inside wheelpath	1	14"-3.5'	4.5+	Shelby Tube	Subgrade

Date Sampled	Route and Section	Location #	Log Mile	County	Description of Location	
5/25/1999	Highway 167 Section 1	3	12.15	Union	2 lanes 2 lanes	Northbound, Southbound
	De	scription of Bo	oreholes			
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type
		1	1'-2'	N/A	Bag	Base
	9 4 4 1	2	3'-5'	N/A	Bag	Subgrade
B-1	outside wheelpath	3	5'-6.5'	N/A	Bag	Subgrade
		4	6.5'-7'	N/A	Bag	Subgrade
		5	6.5'-7'	N/A	Bag	Subgrade
B-2	Southbound, outside lane, center of lane	None				
D 2	Southbound, outside lane,	1	1'-3'	N/A	Bag	Base
C-U	inside wheelpath	2	3'-5'	2-3	Shelby Tube	Subgrade
B 4	Southbound, inside lane,	1		N/A	Bag	Subgrade
В-4	center of lane	2		N/A	Bag	Subgrade

Table C-3: Test Site In	formation for	Highway 15
-------------------------	---------------	------------

Date Sampled	Route and Section	Location #	Log Mile	County	De: of]	scription Location
5/25/1999	Highway 15 Section 3	1	1.00	Bradley	1 lane Northbound, 1 lane Southbound	
	Description of Boreholes					
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type
B 1	Southbound, center of lane,	1	0.5'-1.5'	N/A	Bag	Base
D-1	6" asphalt	2	1.5'-3.5'	4.5+	Shelby Tube	Subgrade
E 2	Northbound, center of lane,	1	0.5'-2'	N/A	Bag	Base
D-2	6" asphalt, 14" base	2	2'-4'	4.5+	Shelby Tube	Subgrade

Table C-4: Test Site Information for Highway 7 Spur

Date	Doute and Section	Location #	Log Mile	Country	De	scription
Sampled	Koute and Section	Route and Section Location # Log Mile Cou		County	of	Location
5/05/1000	Ilisterer 7- Section 2-	1	0.70	Union	1 lane	Northbound,
5/25/1999	Highway /s Section 2s	1	0.70	Union	1 lane	Southbound
	De	scription of Bo	reholes			
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type
P 1	Northbound, outside wheelpath,	1	0.5'-1.5'	N/A	Bag	Base
1-0	5" asphalt, base, concrete pavement	2	1.5'-2'	3.75	Shelby Tube	Subgrade

Date Sampled	Route and Section	Location #	Log Mile	County	Des of I	scription Location
5/26/1999	Highway 79 Section 5	1	5.64	Calhoun	2 lanes Northbound, 2 lanes Southbound	
					(divide	d by median)
	De	escription of Bo	oreholes			
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type
B-1	Northbound, outside lane, outside wheelpath, 7" asphalt	None				
	Northbound outside lane center of lane	1	0.5'-2'	N/A	Bag	Base
B-2	7 5" asphalt 18" hase	2	2'-4'	1.0	Shelby Tube	Subgrade
	7.5 asphan, 18 base	3	4'-6	1.0	Shelby Tube	Subgrade
B-3	Northbound, outside lane, inside wheelpath, 7.5" asphalt	None				
B-4	Northbound, outside lane, off of shoulder	None				
B 5	Northbound, inside lane, inside wheelpath,	1	7"-2'	N/A	Bag	Base
J-5	7" asphalt, 19.5" base	2	2'-4'		Shelby Tube	Subgrade

Table C-5: Test Site Information for Highway 79

Date	Boute and Section	Location #	Log Mile	County	Des	scription
Sampled	Koute and Section	Location #	Log Mile	County	of I	Location
			5.64		2 lanes Northbound,	
5/26/1999	Highway 79 Section 5	2		Calhoun	2 lanes	Southbound
					(divide	d by median)
	De	escription of Bo	reholes		•	
	Borehole Location	Sample #	Depth	PR	Sample Type Material Type	
D 1	Southbound, outside lane, outside wheelpath,	1	7.5"-2'	N/A	Bag	Base
D-1	7.5" asphalt, 20.5" base	2	2'-4'	4-4.5	Shelby Tube	Subgrade
Вр	Southbound, outside lane, center of lane,	Nana				
D-2	7.5" asphalt	INONE				
	Southbound outside lane inside wheelpath	1	7.5"-1.5'	N/A	Bag	Base
B-3	7 5" asrbolt 15" hase	2	1.5'-3.5'	4.5+	Shelby Tube	Subgrade
	7.5 asphan, 15 base	3	3.5'-5.5'	3.0	Shelby Tube	Subgrade
р 4	Southbound, outside lane, shoulder,	Nana				
D-4	7.5" asphalt			г	NOILE	
DS	Southbound, inside lane, inside wheelpath,	1	7"-2'	N/A	Bag	Base
<u>в-э</u>	7" asphalt, 16.5" base	2	2'-4'	4.5+	Shelby Tube	Subgrade

Table C-6: Test Site Information for Otter Creek Road

Date Sampled	Route and Section	Location #	Log Mile	County	Des of l	cription Location
6/28/1999	Otter Creek Road	1	N/A	Pulaski	1 lane 1 lane	Eastbound, Westbound
Description of Boreholes						
	Sample #	Depth	PR	Sample Type	Material Type	
	Fasthound conter of land	1	1'-3'		Shelby Tube	Subgrade
B-1	10" asphalt (full denth)	2	3'-5'		Shelby Tube	Subgrade
	10" asphalt (rull-depth)	3	5'-5.5'	N/A	Bag	Subgrade
B-2	Eastbound, outside wheelpath, 10" asphalt (full-depth)	1	1'-3'	4.5+	Shelby Tube	Subgrade

Table C-7: Test Site Information for Highway 165

Date Sampled	Route and Section	Location #	Log Mile	County	Description of Location		
6/28/1999	Highway 165 Section 8	1	0.44	Lonoke	1 lane 1 lane	Eastbound, Westbound	
	Description of Boreholes						
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type	
D 1	Eastbound, inside wheelpath,	1	10"-11"	N/A	Bag	Base	
D-1	9" asphalt (stripped), 10" base	2	19"-3'	N/A	Bag	Subgrade	
B-2	Eastbound, outside wheelpath, 12" asphalt, 10" base	1	3'-5'		Shelby Tube	Subgrade	
D 2	Westbound, outside wheelpath,	1	2'-4'	1.0	Shelby Tube	Subgrade	
B-3	14" asphalt (bottom 4" stripped) (full-depth)	2	4'-6'	3.5	Shelby Tube	Subgrade	
B-4	Westbound, inside wheelpath, 11" asphalt (stripped at top), 6" base			٦	lone		

Table C-8: Test Site Information for Highway 49

Date Sampled	Route and Section	Location #	Log Mile	County	De of I	scription Location	
6/29/1999	Highway 49 Section 2	1	23.51	Greene	1 lane 1 lane	Northbound, Southbound	
	Description of Boreholes						
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type	
	Northhound outside wheelneth	1	4.75"-15"	N/A	Bag	Base	
B-1	4.75" asphalt 10" class 7 base	2	2'-4'	4.5+	Shelby Tube	Subgrade	
	4.75 asphan, 10 class / base	3	4'-5.5'	4.5+	Shelby Tube	Subgrade	
	Southbound outside wheelnoth	1	5"-15"	N/A	Bag	Base	
B-2	5" asphalt 10" class 7 base	2	1.5'-3.5'	1.5	Shelby Tube	Subgrade	
	5° asphan, 10° class / base	3	3.5'-5.5'	4.5+	Shelby Tube	Subgrade	

Table C-8	(Continued):	Test Site	Information	for Highway 49
-----------	--------------	-----------	-------------	----------------

Date Sampled	Route and Section	Location #	Log Mile	County	De: of l	scription Location	
6/29/1999	Highway 49 Section 2	2	20.21	Greene	2 lanes 2 lanes	Northbound, Southbound	
	De	escription of Bo	oreholes				
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type	
D 1	Northbound, outside lane, outside wheelpath,	1	1'-3'	1.0	Shelby Tube	Subgrade	
D-1	11.5" asphalt (full-depth)	2	3'-5'	3.0	Shelby Tube	Subgrade	
B-2	Northbound, outside lane, center of lane, 11.5" asphalt (full-depth)	None					
	Northbound outside lane inside wheelneth	1	1'-2'	N/A	Bag	Base	
B-3	11.5" asphalt, 12.5" base	2	3'-5'	0.5	Shelby Tube	Subgrade	
		3	5'-7'	2.0	Shelby Tube	Subgrade	
P.4	Northbound, inside lane, inside wheelpath,	1	1'-2'	N/A	Bag	Base	
D-4	12" asphalt	2	2'-3.5'	2.0	Shelby Tube	Subgrade	
B-5	Southbound, outside lane, inside wheelpath, 13" asphalt (full-depth)			٦	Jone		
B-6	Southbound, outside lane, center of lane, 13" asphalt (full-depth)			٦	Jone		
B.7	Southbound, outside lane, outside wheelpath,	1	1'-3'	3.0	Shelby Tube	Subgrade	
<u> </u>	12" asphalt (full-depth)	2	3'-5'	1.5	Shelby Tube	Subgrade	
D.S.	Southbound, inside lane, inside wheelpath,	1	1'-2'	N/A	Bag	Base	
0-0	13" asphalt (bottom 1.5" stripped), 9.5" base	2	2'-3.5'		Shelby Tube	Subgrade	

1 abic C-7. Test she intormation for the low $412 (\pi 1 - \pi 2)$	Table C-9: Test Site	Information	for Highway	412	(#1-#2)
--	----------------------	-------------	-------------	-----	---------

Date Sampled	Route and Section	Location #	Log Mile	County	Description of Location		
6/30/1999	Highway 412 Section 7	1	7.61	Lawrence	2 lanes Westbound, 2 lanes Eastbound		
	De	scription of Bo	oreholes				
	Borehole Location	Sample # Depth PR Sample Type Material T			Material Type		
B-1	Westbound, outside lane, outside wheelpath, 11.75" asphalt (full-depth)	1	1'-3'	2.0	Shelby Tube	Subgrade	
B-2	Westbound, outside lane, center of lane, 12" asphalt (full-depth)	None					
B-3	Westbound, outside lane, inside wheelpath, 12 1/8" asphalt (full-depth)	None					
B-4	Westbound, inside lane, inside wheelpath, 13.75" asphalt (full-depth)	1	1'-3'	4.5+	Shelby Tube	Subgrade	

Table C-9 (Continued): Test Site Information for Highway 412 (#1-#2)

Date Sampled	Route and Section	Location #	Log Mile	County	Description of Location		
6/30/1999	Highway 412 Section 7	2	7.28	Lawrence	1 lane Eastbound, 1 lane Westbound		
	De	scription of Bo	reholes				
	Sample #	Depth	PR	Sample Type	Material Type		
B-1	Westbound, inside wheelpath, 2.5" asphalt (stripped), 2.5" asphalt sand, 2" asphalt, 6" class 7 base, concrete pavement	, None					
	Westbound, center of lane, 2.5" asphalt (stripped), 2.5" asphalt sand, 2" asphalt, 6.25" class 7 base, 7.25" concrete pavement	1				Asphalt Sand	
B-2		2	2'-4'	1.5	Shelby Tube	Subgrade	
		3	4'-6'	1.0	Shelby Tube	Subgrade	
B-3	Westbound, outside wheelpath, 2.75" asphalt (stripped), 2.75" asphalt sand, 2.5" asphalt, concrete pavement			N	Ione		

Table C-10: Test Site Information for Highway 270

Date	Boute and Section	Leastion # Log Mile County Description				
Sampled	Koute and Section	Location #	Log Mille	County	of	Location
				Garland	2 lanes Eastbound	
7/6/1999	Highway 270 Section 6	1	8.6		turi	ning lane,
					2 lanes	s Westbound
	De	escription of Bo	oreholes			
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type
	Westhound outside lane, outside wheelpath	1	7.5"-22"	N/A	Bag	Base
B-1	7 5" asphalt 14" class 5 base	2	2'-3'	N/A	Bag	Subgrade
	7.5 asphart, 14 class 5 base	3	3'-5'	N/A	Bag	Subgrade
	Westbound center of lane	1	7.25"-22"	N/A	Bag	Base
B-2	7 25" sembalt 14" slags 5 hass	2	2'-3'	N/A	Bag	Subgrade
	7.25 asphan, 14 class 5 base	3	3'-5'	N/A	Bag	Subgrade
	Westhound inside lane, outside wheelneth	1	6.25"-2'	N/A	Bag	Base
B-3	6.25" asphalt (bottom 1.5" stripped), 15" base	2	2'-3'	N/A	Bag	Subgrade
		3	3'-4'	N/A	Bag	Subgrade
B-4	Westbound, inside lane, inside wheelpath,			ו	None	
	6.75" asphalt (bottom 2" stripped), 15" base			-		
B-5	Eastbound, outside lane, outside wheelpath,	1	7"-2'	N/A	Bag	Base
	7" asphalt (stripping at 2.5"), 16" base	2	2'-5'	N/A	Bag	Subgrade
	Easthound outside lane center of lane	1	8"-2'	N/A	Bag	Base
B-6	7 25" asphalt (strinning from 3" to bottom)	2	2'-3'	N/A	Bag	Subgrade
	7.25 asphan (suppling from 5 to bottom)	3	3'-5'	N/A	Bag	Subgrade
B 7	Eastbound, inside lane, outside wheelpath,	1	6"-22"	N/A	Bag	Base
D -7	6" asphalt (bottom 3.5" stripped)	2	2'-4'	N/A	Bag	Subgrade
B-8	Eastbound, inside lane, inside wheelpath, 6.75" asphalt	None				

Date Sampled	Route and Section	Location #	Log Mile	County	Des of l	Description of Location		
7/6/1999	Highway 270 Section 6	2	6.47	Garland	2 lanes 2 lanes	s Eastbound, s Westbound		
	De	escription of Boreholes						
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type		
B-1	Westbound, outside lane, outside wheelpath, 11 75" asphalt (stripping from 3" to 9")	1	1'-2'	N/A	Bag	Subgrade		
	(full-depth)	2	2'-4'	N/A	Bag	Subgrade		
	Westhound outside lane inside wheelnath	1	14"-2'	N/A	Bag	Subgrade		
B2	14" asphalt (full denth)	2	2'-4'	N/A	Bag	Subgrade		
	14 asphan (lun-depth)	3	4'-5'	N/A	Bag	Subgrade		
	Westbound, inside lane, outside wheelpath,	1	1'-2'	N/A	Bag	Old Asphalt?		
B-3	12" asphalt (some stripping 1.5"-8") (severe stripping	2	2'-3'	N/A	Bag	Subgrade		
	bottom 4") (full-depth)	3	3'-4'	N/A	Bag	Subgrade		
B-4	Westbound, inside lane, inside wheelpath, 13" asphalt (some stripping 1.5"-9") (severe stripping 9"-13") (full-depth)	a None						
B-5	Eastbound, outside lane, outside wheelpath,	1	1'-2'	N/A	Bag	Subgrade		
B -5	11"-15") (full-depth)	2	2'-5'	N/A	Bag	Subgrade		
B-6	Eastbound, outside lane, inside wheelpath, 14.5" asphalt (stripping worsens from 1.5"-14.5") (full-depth)	None						
B-7	Eastbound, inside lane, outside wheelpath, Unknown depth of asphalt (8" recovered) (stripping throughout)	None						

Table C-11: Test Site Information for Highway 65

Date	Route and Section	Location # Log Mile County Description				scription
Sampled	Route una Steaton	Elocation #	Lug Mile	County	of Location	
					2 lanes Northbound,	
7/7/1999	Highway 65 Section 9	1	17.79	Faulkner	tur	ning lane,
					2 lanes	Southbound
	De	escription of Bo	oreholes			
	Borehole Location	ocation Sample # Depth PR Sample Type Material T				Material Type
B-1	Northbound, outside lane, outside wheelpath, 13" asphalt, 12" base	1	13"-2'	N/A	Bag	Base
B-2	Northbound, outside lane, center of lane, 14.5" asphalt (possible stripping at bottom), 8" base	1	14.5"-22"	N/A	Bag	Base
В-3	Northbound, outside lane, inside wheelpath, 11.5" asphalt	None				
B-4	Northbound, inside lane, outside wheelpath, 12" asphalt			1	None	
		1	9"-1.5'	N/A	Bag	Base
D 5	Southbound, outside lane, outside wheelpath,	2	1.5'-2.5'	N/A	Bag	Subgrade
D -3	9" asphalt, 10" base	3	2.5'-4'	N/A	Bag	Subgrade (5-11-14)
B-6	Southbound, outside lane, center of lane, 9.75" asphalt (stripping at bottom 1"), 8" base	None				
B 7	Southbound, outside lane, inside wheelpath,	1	1.5'-2.5'	N/A	Bag	Subgrade
<u> </u>	11.5" asphalt, 6" base	2	3.5'-5.5'	N/A	Bag	Subgrade
B-8	Southbound, inside lane, outside wheelpath, 19" asphalt (bottom 2.5" stripped)	None				

Date Sampled	Route and Section	Location #	Log Mile	County	Description of Location		
7/7/1999	Highway 65 Section 9	2	11.79	Faulkner	2 lanes Northbound, turning lane, 2 lanes Southbound		
	De	scription of Bo	oreholes				
Borehole Location Sample # Depth				PR	Sample Type	Material Type	
B-1	Northbound, outside lane, outside wheelpath, 14" asphalt (moderate raveling) (stripping at 6.5" and 9.5") (full-depth)	None					
B_2	Northbound, outside lane, center of lane, 14.5" asphalt (moderate rayeling) (stripping at 6.5"	1	2'-3.5'		Shelby Tube	Subgrade	
D-2	and 10") (full-depth)	2	3.5'-5'	N/A	Bag	Subgrade	
B-3	Northbound, outside lane, inside wheelpath, 14" asphalt (moderate raveling) (full-depth)	None					
B-4	Northbound, inside lane, outside wheelpath, 14.25" asphalt (full-depth)	None					

Date Sampled	Route and Section	Location #	Log Mile	County	Description of Location		
8/9/1999	Highway 65 Section 9	10	11.79	Faulkner	2 lanes Northbound, turning lane, 2 lanes Southbound		
	De	scription of Bo	oreholes			•	
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type	
B-1	Southbound, outside lane, outside wheelpath, 15" asphalt (full-depth) (no stripping, minor raveling	None					
B-2	Southbound, outside lane, center of lane, 14.75" asphalt (full-depth) (minor raveling)	1	2'-5'	N/A	Bag	Subgrade	
В-3	Southbound, outside lane, inside wheelpath, 13.75" asphalt (full-depth) (stripping & softening in bottom 0.5")	None					
B-4	Southbound, inside lane, 5" west of crack in outside wheelpath, 10.75" asphalt recovered (full-depth) (bottom stripped)	None					
B-5	Southbound, inside lane, 2" east of crack in outside wheelpath, 10.75" asphalt recovered (full-depth) (bottom stripped)	None					
B-6	Southbound, inside lane, center of lane, 14.75" asphalt (broke at 3.5"), ~3" of aggregate base course	1	2'-5'	N/A	Bag	Subgrade	

Date	Route and Section	Location #	Location # Log Mile County Descrip					
Sampled	Koute and Section	Location n	Log Mile	County	of Location			
					2 lanes	Northbound,		
8/9/1999	Highway 65 Section 9	11	13.75	Faulkner	tur	ning lane,		
					2 lanes	s Southbound		
	De	scription of Bo	reholes					
	Borehole Location	Sample # Depth PR Sample Type Material			Material Type			
D 1	Southbound, outside lane, inside wheelpath,	None						
D-1	9.5" asphalt (broke at 5.5"), class 7 base	None						
	Southbound, outside lane, center of lane,							
B-2	10" asphalt (minor stripping at bottom 1"), 9" of	None						
	class7 base							
	Southbound, outside lane, outside wheelpath,							
B-3	9.5" asphalt (minor stripping in bottom 0.5"), 9" of	None						
	class 7 base							
	Southbound, inside lane, outside wheelpath,							
B-4	9.75" asphalt (some stripping in bottom 0.5"), 10" of	1	2'-5'	N/A	Bucket	Subgrade		
	class 7 base							
Df	Southbound, inside lane, center of lane,			,	Jona			
В-2	9.75" asphalt (broke at 5.5") (stripping at 5.5")) None						

Date Sampled	Route and Section	Location #	Log Mile	County	De	Description of Location	
8/9/1999	Highway 65 Section 9	12	17.2	Faulkner	2 lanes Northbound turning lane, 2 lanes Southbound		
	De	scription of Bo	reholes				
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type	
B-1	Southbound, outside lane, outside wheelpath, 14.5" asphalt (full-depth) (broke at 10") (some stripping at 10") (major raveling)	None					
B-2	Southbound, outside lane, center of lane, 14.34" asphalt (full-depth) (broke at 8.5") (stripping at 8.5") (some softening at bottom, major raveling)	1	2'-5'	N/A	Bag	Subgrade	
В-3	Southbound, inside lane, inside wheelpath, 14.5" asphalt (full-depth) (very minor stripping in bottom 5", major raveling)	None					
B-4	Southbound, inside lane, center of lane, 14.5" asphalt (broke at 2" and 9.5") (stripping at breaks and from 7.5"-9.5", major raveling), 2" to 4" of gravel below asphalt	None					
B-5	Southbound, inside lane, outside wheelpath, 14.5" asphalt (very minor stripping in bottom, major raveling), 2" to 4" of gravel below asphalt	None					

Table C-12: Test Site Information for Highway 71 (#1)

Date	Douto and Soution	Lesstien #	L og Milo	Compte	Description		
Sampled	Koute and Section	Location #	Log Mille	County	of	Location	
					2 lanes Northbound,		
7/8/1999	Highway 71 Section 13	1 7.84 Sebastian		2 lanes	Southbound		
		(divided by median)					
	De	escription of Bo	oreholes			-	
	Borehole Location Sample # Depth PR Sample Type Mai				Material Type		
B_1	Southbound, outside lane, outside wheelpath,	1	13"-21"	N/A	Bag	Base	
D-1	13" asphalt, 8" base	2	2'-4'	N/A	Bag	Subgrade	
B-2	Southbound, outside lane, center of lane, 13" asphalt (stripping at bottom 0.5", 8" base	1	2.5'-3.5'	2.5	Shelby Tube	Subgrade	
B-3	Southbound, inside lane, center of lane, 13" asphalt, 8" base	1	2'-4'	N/A	Bag	Subgrade	
B-4	Southbound, inside lane, inside wheelpath, 13.5" asphalt, 10" base	1	2'-3'	2.0	Shelby Tube	Subgrade	
	Northbound outside lane outside wheelnath	1	10"-20"	N/A	Bag	Base	
B-5	0.75" asphalt 10" base	2	2'-3'	N/A	Bag	Subgrade	
	9.75 asphan, 10 base	3	3'-4'	N/A	Bag	Subgrade	
B-6	Northbound, outside lane, center of lane, 9.75" asphalt	None					
B-7	Northbound, inside lane, center of lane, 10.5" asphalt	None					
B-8	Northbound, inside lane, inside wheelpath, 10.75" asphalt, 10" base	1	2'-3.5'	N/A	Bag	Subgrade (6-9-11)	

Table C-13: Test Site Information for Highway 71 (#10-#13)

Date Sampled	Route and Section	Location #	Log Mile	Mile County Descrip		scription Location
8/16/1999	Highway 71 Section 17	10	6.99	Washington	2 lanes 2 lanes (divida	Northbound, Southbound
	De	Description of Boreholes				d by median)
	Borehole Location	Sample #	Sample # Depth PR Sample Type Material Type			Material Type
B-1	Southbound, outside lane, inside wheelpath, 16" asphalt (full-depth)(voids at 8") (no stripping)	None				
B_2	Southbound, outside lane, center of lane,	1	1.5'-2.5'	N/A	Bag	Subgrade
D-2	16.5" asphalt (full-depth)	2	2 2.5'-5'		Bag	Subgrade
B_3	Southbound, outside lane, outside wheelpath,	1	1.5'-5'	N/A	Bag	Subgrade
C-U	16" asphalt (full-depth)	2	1.5'-5'	N/A	Bag	Subgrade

Date Sampled	Route and Section	Location #	Log Mile	County	Description of Location	
0.14 6 14 000					2 lanes	Northbound,
8/16/1999	Highway 71 Section 17 1			Washington	2 lanes (divide	d by median)
	De	Description of Boreholes				
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type
B-1	Southbound, outside lane, inside wheelpath, 17" asphalt (full-depth)	None				
D 2	Southbound, outside lane, center of lane,	1	1.5'-3'	N/A	Bag	Subgrade
D-2	17" asphalt (full-depth)	2	2 3'-5' N/A		Bag	Subgrade
B.3	Southbound, outside lane, outside wheelpath,	1	1.5'-3'	N/A	Bag	Subgrade
د- ت	16.25" asphalt (full-depth)	2	3'-5'	N/A	Bag	Subgrade

Table C-13 (Continued): Test Site Information for Highway 71 (#10-#13)

Date Sampled	Route and Section	Location #	Log Mile	County	Des of l	scription Location
8/16/1999	Highway 71 (540) Section 4	12	65.33	Washington	2 lanes 2 lanes (divide	Northbound, Southbound d by median)
Description of Boreholes						
	Borehole Location	Sample # Depth PR Sample Type Material Type				Material Type
B-1	Southbound, outside lane, inside wheelpath, 18" asphalt (full-depth)	None				
B-2	Southbound, outside lane, center of lane, 18" asphalt (full-depth)	1	1.5'-2.5'	N/A	Bag	Subgrade
B-3	Southbound, outside lane, outside wheelpath, 17.25" asphalt (full-depth)	None				
B-4	Southbound, outside lane, shoulder, 1.5" asphalt	None				

Date Sampled	Route and Section	Location #	Log Mile	County	Description of Location	
8/16/1999	Highway 71 (540) Section 4	13	63.83	Washington	2 lanes Northbound, 2 lanes Southbound (divided by median)	
Description of Boreholes						
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type
B-1	Southbound, outside lane, center of lane, (16" asphalt recovered) (full-depth)	1	16"-5'	N/A	Bag	Subgrade
B-2	Southbound, outside lane, outside wheelpath, 18" asphalt (full-depth) (slight stripping on bottom .25")	2	1.5'-5'	N/A	Bag	Subgrade

Date Sampled	Route and Section	Location #	Log Mile	County	Des of I	cription Location
8/17/1999	Highway 412 Section 2	10	0.95	Washington	2 lanes 2 lanes (divide	s Eastbound, s Westbound d by median)
	De	scription of Bo	oreholes			
	Borehole Location	Sample # Depth PR Sample Type Material Ty				Material Type
	Easthound outside lane inside wheelnoth	1	1'-2'	N/A	Bag	Base
B-1	11" asphalt (no stripping), 12" base	2	2'-3.5'	N/A	Split Spoon	Subgrade (7-6-9)
	Easthound outside lane conter of lane	1	11.25"-23"	N/A	Bag	Base
B-2	11.25" asphalt, 11.5" base	2	2'-3.5'	N/A	Split Spoon	Subgrade (8-8-8)
В-3	Eastbound, inside lane, center of lane, 11" asphalt, 11" base	None				
B-4	Eastbound, inside lane, inside wheelpath 10.75" asphalt, ?" base	None				

Table C-14: Test Site Information for Highway 412 (#10-#15)

Date Sampled	Route and Section	Location #	Log Mile	County	Des of I	cription Location
8/17/1999	Highway 412 Section 2	11	2.08	Washington	2 lanes 2 lanes (divide	Beastbound Westbound by median)
	De	scription of Bo	oreholes			• /
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type
	Easthound outside lane inside wheelpath	1	11.5"-22.5"	N/A	Bag	Base
B-1	11.5" asphalt, 11" base	2	2'-3.5'	N/A	Split Spoon	Subgrade (13-30-28)
	Easthound outside lane center of lane	1	11.5"-2'	N/A	Bag	Base
B-2	11.5" asphalt, 11" base	2	2'-3.5'	N/A	Split Spoon	Subgrade (13-25-21)
B-3	Eastbound, inside lane, center of lane, 11.25" asphalt, 11" base	None				
B-4	Eastbound, inside lane, inside wheelpath 10.25" asphalt, ?" base	None				

Date Sampled	Route and Section	Location #	Log Mile	County	Des of l	cription Location		
					2 lanes	Eastbound,		
8/17/1999	Highway 412 Section 2	12	4.05	Washington	turr	ing lane,		
			L		2 lanes	Westbound		
	De	escription of Bo	preholes					
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type		
D 1	Eastbound, outside lane, inside wheelpath,	1	140.200	1 148 208	14" 22"	NI/A	Sulit Succe	Subgrade
D-1	13.75" asphalt (full-depth)	I	14 -52	N/A	Spin Spoon	(8-10-12)		
D 2	Eastbound, outside lane, center of lane,	1	1 14"-32" N/A		Sulit Succes	Subgrade		
D-2	14" asphalt (full-depth)	L		14 -52 N/A	" N/A	Split Spoon	(7-14-13)	
D 2	Eastbound, outside lane, outside lane,	1	1 14"-32" N/A	22" N/A	Enlit Engen	Subgrade		
B-3	14" asphalt (full-depth)	L		Split Spoon	(9-11-12)			
р и	Eastbound, inside lane, center of lane,	1		Enlit Engen	Subgade			
D-4	13.5" asphalt (full-depth)	I	14 -52	IN/A	Split Spoon	(7-11-8)		
DS	Eastbound, inside lane, inside wheelpath,	1	141 221	NI/A	Enlit Encon	Subgrade		
в-3	13.5" asphalt (full-depth)	1	14 - 52"	IN/A	Spiit Spoon	(8-10-10)		
P.6	Turning lane,	Nama						
D-0	13" asphalt (full-depth)	None						

Table C-14 (Continued): Test Site Information for Highway 412 (#10-#15)

Date	Boute and Section	Location #	Log Mile	County	De	scription		
Sampled	Route and Section	Location #	Log Mile	County	of Location			
					2 lane	s Eastbound,		
8/17/1999	Highway 412 Section 2	13	6.27	5.27 Washington	turi	ning lane,		
					2 lanes	s Westbound		
	De	scription of Bo	oreholes					
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type		
D 1	Eastbound, outside lane, inside wheelpath,	1	15" 262"	NT/A	Enlit Engen	Subgrade		
D-1	15" asphalt (voids at bottom, minor stripping)	1	15 - 505	N/A	IN/A	IV/A	Split Spoon	(14-13-9)
Вр	Eastbound, outside lane, center of lane,	1	15.5"-33.5" N/A	" N/A	Enlit Engan	Subgade		
D-2	15.5" asphalt (full-depth)	1			Spiit Spoon	(10-9-7)		
D 2	Eastbound, outside lane, outside wheelpath,	1	151 221	150.000 37/4	Quilit Que an	Subgrade		
В-3	15" asphalt (full-depth)	1	15"-35"	N/A	Split Spoon	(11-8-2)		
D 4	Eastound, inside lane, center of lane,	1	151 221	DT/A	Split Spoon	Subgrade		
В-4	15.25" asphalt (full-depth)	1	15"-35"	N/A		(11-7-6)		
	Eastbound, inside lane, inside wheelpath,					01		
B-5	16.25" asphalt (full-depth) (bottom 2.5" softened	1	16"-34"	'-34" N/A	N/A Split Spoon	Subgrade		
	with modertae stripping)					(7-0-2)		

Table C-14 (Continued): Test Site Information for Highway 412 (#10-#15)

Date Sampled	Route and Section	Location #	Log Mile	County	De of]	scription Location	
8/17/1999	Highway 412 Section 2	14	7.55	Washington	2 lane tur 2 lane	s Eastbound, ning lane, s Westbound	
	De	scription of Bo	reholes				
	Borehole Location	Sample #	Depth	PR	Sample Type Material Type		
B-1	Eastbound, inside lane, center of lane, 12.5" asphalt (full-depth)	1	1'-2.5'	N/A	Split Spoon	Subgrade (6-4-3)	
БЭ	Eastbound, inside lane, inside wheelpath,	1	1'-1.5'	N/A	Split Spoon	Subgrade (6-5-3)	
B-2	12.5" asphalt (full-depth)	2	1.5'-2.5'	N/A	Split Spoon	Subgrade (6-5-3)	
B-3	Westbound, outisde lane, center of lane, 12.25" asphalt (full-depth) (broke at 8.75")	1	1'-2.5'	N/A	Split Spoon	Subgrade (9-8-7)	
B-4	Westbound, outside lane, outside wheelpath, 13" asphalt (full-depth) (broke at 9")	1	13"-25"	N/A	Split Spoon	Subgrade (8-6-6)	

Table C-14 (Continued): Test Site Information for Highway 412 (#10-#15)

Table C-14 (Continued): Test Site Information for Highway 412 (#10-#15)

Date Sampled	Route and Section	Location #	Log Mile	County	De: of l	scription Location
8/17/1999	Highway 412 Section 2	15 8.63		Washington	2 lane turi	s Eastbound, ning lane,
					2 lanes	s Westbound
Description of Boreholes						
	Borehole Location	Sample #	Depth	PR	Sample Type	Material Type
B-1	Eastbound, outside lane, center of lane, 10.5" asphalt, 4" base	1	15"-33"	N/A	Split Spoon	Subgrade (5-5-5)
B-2	Eastbound, outside lane, outside wheelpath, 11" asphalt (full-depth) (broke at 7.25")	1	1'-2.5'	N/A	Split Spoon	Subgrade (4-4-4)
B-3	Eastbound, outside lane, inside wheelpath, 10.5" asphalt (full-depth)	1	1'-2.5'	N/A	Split Spoon	Subgrade (4-8-8)

APPENDIX D

MOISTURE CONTENTS FROM BAG SAMPLES

Table D-1: Summary of Mois	ture Contents from Bag Samples
----------------------------	--------------------------------

Location	Boring #	Sample #	Depth	MC, %
Hwy 82 - #1	3	Î	1'-1.5'	14.40
	4	1	.5'-4'	11.93
Hwy 82 - #2	4	2	4'-6'	23.69
	1	1	9"-1.5'	6.98
Hwy 167 - #1	2	1	14"-28"	15.18
	1	1	1'-2'	6.13
	1	2	3'-5'	10.05
	1	5	6.5'-7'	20.07
Hwy 167 - #3	3	1	1'-3'	6.73
	4	1		13.74
	4	2		3.43
	1	1	.5'-1.5'	6.09
Hwy 15 - #1	2	1	.5'-2'	7.59
Hwy 7s - #1	1	1	.5'-1.5'	14.05
	2	1	.5'-2'	7.75
Hwy 79 - #1	5	1	7"-2'	7.78
	1	1	7 5"-2'	5.94
Hwy 79 - #2	3	1	7 5"-1 5'	5.84
	5	1	7"-2'	9.86
Otter Creek Rd	1	3	5'-5 5'	17.44
Otter Creek Ru	1	1	10"-11"	6.82
Hwy 165 - #1	1	2	10"-3'	15.08
	1	1	4 75"-15"	4 74
Hwy 49 - #1	2	1	5"-15"	2 44
	3	1	1'-2'	6 3 9
Hwy 49 - #2	4	1	1'-2'	5.06
11119 15 112	8	1	1'-2'	8 53
	1	1	7 5"-22"	4 67
	1	2	2'-3'	11 41
	1	3	3'-5'	15.23
	2	1	7 25"-22"	5 51
	2	2	2'-3'	9.38
	2	3	3'-5'	13.50
	3	1	6.25"-2'	5.96
	3	2	2'-3'	9.62
Hwy 270 - #1	3	3	3'-4'	14.09
	5	1	7"-2'	6.88
	5	2	2'-5'	14.95
	6	1	8"-2'	5.66
	6	2	2'-3'	10.00
	6	3	3'-5'	8.63
	7	1	6"-22"	5.69
	7	2	2'-4'	15.39
	1	1	1'-2'	19.97
	1	2	2'-4'	17.34
	2	1	14"-2'	21.93
	2	2	2'-4'	21.44
11 050 110	2	3	4'-5'	19.86
Hwy 270 - #2	3	1	1'-2'	9.77
	3	2	2'-3'	20.96
	3	3	3'-4'	21.59
	5	1	1'-2'	9.73
	5	2	2'5'	19.15
		-		

Location	Boring #	Sample #	Denth	MC %
Location	1 Doring #	1	13"-2'	7 /3
	2	1	14 5" 22"	17.09
	5	1	14.3 -22	17.96
II	5	1	9 -1.5	17.24
HWY 03 - #1	5	2	1.5-2.5	12.73
	5	3	2.5'-4'	11,31
	7	1	1.5'-2.5'	4.28
	7	2	3.5'-5.5'	20.18
Hwy 65 - #10	6	1		15.45
Hwy 65 - #11	4	1		8.98
Hwy 65 #12	2	1		8.44
	1	1	13"-21"	6.33
	1	2	2'-4'	11.69
	3	1	2'-4'	13.84
Hwy 71 - #1	5	1	10"-20"	4.13
	5	2	2'-3'	10.25
	5	3	3'-4'	12.50
	8	1	2'-3.5'	11.99
Hwy 71 - #2	BULK			15.35
	2	1	1.5'-2.5'	30.48
Unry 71 - #10	2	2	2.5'-5'	23.95
11wy / 1 - #10	3	1	1.5'-5'	36.44
	3	2	1.5'-5'	35.80
	2	1	1.5'-3'	35.22
TT 71 411	2	2	3'-5'	13.30
Hwy /1 - #11	3	1	1.5'-3'	35.90
	3	2	3'-5'	10.94
	2	1	1.5'-2.5'	36.83
	2	2		28.46
Hwy 71 - #12	3	1		36.45
	3	2		35.07
	2	1	1 5'-5'	30.34
Hwy 71 - #13	2	2		29.78
	1	1	1'-2'	3.03
Hwy 412 - #10	1	2	2'-3 5'	30.09
11.19 112 1110	2	1	11 25"-23"	4 48
	1	1	11.5"-22.5"	30.20
	1	2	2'-3 5'	17.10
Hwy 412 - #11	2	1	11 5"-2'	6 50
	2	2	2'-3 5'	17.86
	1	1	14"-32"	24.86
	2	1	14"-32"	24.80
Hwy 412 - #12	3	1	14"-32"	10.42
11wy 412 - #12	3	1	14 -32	24.70
	5	1	14 -32	24.79
	3	1	14 -32	22.00
	1	1	15 -33	11.00
TL 412 #12	2	1	15.5 -55.5	13.04
Hwy 412 - #13	3	1	15"-33"	18.00
	4	1	15"-33"	16.31
	5		10"34"	19.07
			1'-2.5'	20.98
TT 415 //1			1'-1.5'	14.19
Hwy 412 - #14	2	2	1.5'-2.5'	24.27
	3	1	1'-2.5'	18.37
	4	1	13"-2,5'	17.14
	1	1	15"-33"	16.09
Hwy 412 - #15	2	1	1'-2.5'	21.07
1	1 3	1 1	1'-2 5'	20.43

Table D-1 (Continued): Summary of Moisture Contents from Bag Samples

Table D-2: Moisture Contents from Bag Samples for Highway 82

	Container #	31
	Mass of cup + wet soil	60.71
	Mass of cup + dry soil	55.05
	Mass of cup	15.3
	Mass of dry soil, Ms	39.75
	Mass of water, Mw	5.66
Hwy 82 #1,	Water Content, w%	14.24
в-3,	Container #	83
S-1	Mass of cup + wet soil	59.07
	Mass of cup + dry soil	53.51
	Mass of cup	15.3
	Mass of dry soil, Ms	38.21
	Mass of water, Mw	5.56
	Water Content, w%	14.55
	Avg. w%	14.40
	Container #	140
	Mass of cup + wet soil	57.8
	Mass of cup + dry soil	49
	Mass of cup	10.99
	Mass of dry soil, Ms	38.01
	Mass of water, Mw	8.8
Hwy 82 #2,	Water Content, w%	23.15
в-4,	Container #	XX
S-2	Mass of cup + wet soil	65.97
	Mass of cup + dry soil	56.47
	Mass of cup	17.25
	Moss of dry soil Ms	20 22
	Mass of dry son, lvis	39.22
	Mass of water, Mw	9.5
	Mass of water, Mw Water Content, w%	9.5 24.22

	Container #	133
	Mass of cup + wet soil	66.71
	Mass of cup + dry soil	60.96
	Mass of cup	10.95
	Mass of dry soil, Ms	50.01
	Mass of water, Mw	5.75
Hwy 82 #2,	Water Content, w%	11.50
в-4,	Container #	131
S-1	Mass of cup + wet soil	65.65
	Mass of cup + dry soil	60.1
	Mass of cup	15.21
	Mass of dry soil, Ms	44.89
	Mass of water, Mw	5.55
	Water Content, w%	12.36
	Avg. w%	11.93

	Container #	54
	Mass of cup + wet soil	40.71
	Mass of cup + dry soil	39.05
	Mass of cup	15.54
	Mass of dry soil, Ms	23.51
	Mass of water, Mw	1.66
Hwy 167 #1,	Water Content, w%	7.06
B-1,	Container #	55
S-1	Mass of cup + wet soil	57.18
	Mass of cup + dry soil	54.48
	Mass of cup	15.37
	Mass of dry soil, Ms	39.11
	Mass of water, Mw	2.7
	Water Content, w%	6.90
	Avg. w%	6.98

Table D-3: Moisture Contents from Bag Samples for Highway 167

	Container #	58
	Mass of cup + wet soil	54.59
	Mass of cup + dry soil	52.18
	Mass of cup	15.32
	Mass of dry soil, Ms	36.86
Hwy 167 #3,	Mass of water, Mw	2.41
B-1,	Water Content, w%	6.54
S-1	Container #	59
	Mass of cup + wet soil	47.77
	Mass of cup + dry soil	46
	Mass of cup	15.02
	Mass of dry soil, Ms	30.98
	Mass of water, Mw	1.77
	Water Content, w%	5.71
	Avg. w%	6.13

	Container #	62
	Mass of cup + wet soil	45.13
	Mass of cup + dry soil	39.44
	Mass of cup	15.84
	Mass of dry soil, Ms	23.6
	Mass of water, Mw	5.69
Hwy 167 #3,	Water Content, w%	24,11
B-1,	Container #	63
S-5	Mass of cup + wet soil	51.49
	Mass of cup + dry soil	46.54
	Mass of cup	15.66
	Mass of dry soil, Ms	30.88
	Mass of water, Mw	4.95
	Water Content, w%	16.03
	Avg. w%	20.07

	Container #	56
	Mass of cup + wet soil	54.94
	Mass of cup + dry soil	49.69
	Mass of cup	15.33
	Mass of dry soil, Ms	34.36
	Mass of water, Mw	5.25
Hwy 167 #1,	Water Content, w%	15.28
в-2,	Container #	57
S-1	Mass of cup + wet soil	54.86
	Mass of cup + dry soil	49.68
	Mass of cup	15.35
	Mass of dry soil, Ms	34.33
	Mass of water, Mw	5.18
	Water Content, w%	15.09
	Avg. w%	15.18

	Container #	60
	Mass of cup + wet soil	43.72
	Mass of cup + dry soil	40.8
	Mass of cup	10.88
	Mass of dry soil, Ms	29.92
Hwy 167 #3,	Mass of water, Mw	2.92
B-1,	Water Content, w%	9.76
S-2	Container #	61
	Mass of cup + wet soil	56.42
	Mass of cup + dry soil	51.32
	Mass of cup	1.97
	Mass of dry soil, Ms	49.35
	Mass of water, Mw	5.1
	Water Content, w%	10.33
	Avg. w%	10.05
	Container #	64
	Mass of cup + wet soil	59.23
	Mass of $cup + dry$ soil	56.54

	Mass of cup + wet son	39.23
	Mass of cup + dry soil	56.54
	Mass of cup	15.36
	Mass of dry soil, Ms	41.18
	Mass of water, Mw	2.69
Hwy 167 #3,	Water Content, w%	6.53
в-3,	Container #	65
S-1	Mass of cup + wet soil	58.49
	Mass of cup + dry soil	55.66
	Mass of cup	14.78
	Mass of dry soil, Ms	40.88
	Mass of water, Mw	2.83
	Water Content, w%	6.92
	Avg. w%	6.73

Table D-3 (Continued): Moisture Contents from Bag Samples for Highway 167

	Container #	224
	Mass of cup + wet soil	63.28
	Mass of cup + dry soil	56.98
	Mass of cup	12.09
	Mass of dry soil, Ms	44.89
	Mass of water, Mw	6.3
Hwy 167 #3,	Water Content, w%	14.03
В-4,	Container #	4 (18)
S-1	Mass of cup + wet soil	70.12
	Mass of cup + dry soil	63.02
	Mass of cup	10.2
	Mass of dry soil, Ms	52.82
	Mass of water, Mw	7.1
	Water Content, w%	13.44
	Avg. w%	13.74

	Container #	106
	Mass of cup + wet soil	53.75
	Mass of cup + dry soil	49.99
	Mass of cup	15.49
	Mass of dry soil, Ms	34.5
	Mass of water, Mw	3.76
Hwy 167 #3,	Water Content, w%	10.90
B-4,	Container #	LL
S-2	Mass of cup + wet soil	66.43
	Mass of cup + dry soil	63.7
	Mass of cup	17.91
	Mass of dry soil, Ms	45.79
	Mass of water, Mw	2.73
	Water Content, w%	5.96
	Avg. w%	8.43

Table D-4: Moisture Contents from Bag Samples for Highway 15

	Container #	50
	Mass of cup + wet soil	63.11
	Mass of cup + dry soil	60.56
	Mass of cup	15.18
	Mass of dry soil, Ms	45.38
	Mass of water, Mw	2.55
Hwy 15 #1	Water Content, w%	5.62
B-1,	Container #	51
S-1	Mass of cup + wet soil	49.33
	Mass of cup + dry soil	47.19
	Mass of cup	14.53
	Mass of dry soil, Ms	32.66
	Mass of water, Mw	2.14
	Water Content, w%	6.55
	Avg. w%	6.09

	Container #	52
	Mass of cup + wet soil	68.77
	Mass of cup + dry soil	64.9
	Mass of cup	17.84
	Mass of dry soil, Ms	47.06
	Mass of water, Mw	3.87
Hwy 15 #1,	Water Content, w%	8.22
в-2,	Container #	53
S-1	Mass of cup + wet soil	59.5
	Mass of cup + dry soil	56.79
	Mass of cup	17.86
	Mass of dry soil, Ms	38.93
	Mass of water, Mw	2.71
	Water Content, w%	6.96
	Avg. w%	7.59

Table D-5: Moisture Contents from Bag Samples for Highway 7 Spur

	Container #	#6
	Mass of cup + wet soil	171.03
	Mass of cup + dry soil	154.21
	Mass of cup	39.9
	Mass of dry soil, Ms	114.31
	Mass of water, Mw	16.82
Hwy 7s #1,	Water Content, w%	14.71
B-1,	Container #	105
S-1	Mass of cup + wet soil	170.92
	Mass of cup + dry soil	153.17
	Mass of cup	20.53
	Mass of dry soil, Ms	132.64
	Mass of water, Mw	17.75
	Water Content, w%	13.38
	Avg. w%	14.05

	Container #	15
	Mass of cup + wet soil	63.31
	Mass of cup + dry soil	59.27
	Mass of cup	10.1
	Mass of dry soil, Ms	49.17
	Mass of water, Mw	4.04
Hwy 79 #1,	Water Content, w%	8.22
в-2,	Container #	210
S-1	Mass of cup + wet soil	67.39
	Mass of cup + dry soil	63.68
	Mass of cup	12.75
	Mass of dry soil, Ms	50.93
	Mass of water, Mw	3.71
	Water Content, w%	7.28
	Avg. w%	7.75

Table D-6: Moisture Contents from Bag Samples for Highway 79

	Container #	133
	Mass of cup + wet soil	61.9
	Mass of cup + dry soil	59
	Mass of cup	12.25
	Mass of dry soil, Ms	46.75
	Mass of water, Mw	2.9
Hwy 79 #2,	Water Content, w%	6.20
B-1,	Container #	146
S-1	Mass of cup + wet soil	65.98
	Mass of cup + dry soil	63.11
	Mass of cup	12.51
	Mass of dry soil, Ms	50.6
	Mass of water, Mw	2.87
	Water Content, w%	5.67
	Avg. w%	5.94

	Container #	166
	Mass of cup + wet soil	183.29
	Mass of cup + dry soil	168.23
	Mass of cup	23.56
	Mass of dry soil, Ms	144.67
	Mass of water, Mw	15.06
Hwy 79 #2,	Water Content, w%	10.41
В-5,	Container #	117A
S-1	Mass of cup + wet soil	161.41
	Mass of cup + dry soil	149.67
	Mass of cup	23.59
	Mass of dry soil, Ms	126.08
	Mass of water, Mw	11.74
	Water Content, w%	9.31
	Avg. w%	9.86

	Container #	249
	Mass of cup + wet soil	63.76
	Mass of cup + dry soil	59.96
	Mass of cup	12.54
	Mass of dry soil, Ms	47.42
	Mass of water, Mw	3.8
Hwy 79 #1,	Water Content, w%	8.01
в-5,	Container #	242
S-1	Mass of cup + wet soil	71.16
	Mass of cup + dry soil	67.11
	Mass of cup	13.47
	Mass of dry soil, Ms	53.64
	Mass of water, Mw	4.05
	Water Content, w%	7.55
	Avg. w%	7.78

	Container #	24
	Mass of cup + wet soil	65.51
	Mass of cup + dry soil	62.41
	Mass of cup	10.12
	Mass of dry soil, Ms	52.29
	Mass of water, Mw	3.1
Hwy 79 #2,	Water Content, w%	5.93
В-3, S-1	Container #	610
	Mass of cup + wet soil	71.88
	Mass of cup + dry soil	68.68
	Mass of cup	13.06
	Mass of dry soil, Ms	55.62
	Mass of water, Mw	3.2
	Water Content, w%	5.75
	Avg. w%	5.84

Table D-7: Moisture Contents from Bag Samples for Otter Creek Road

	Container #	17
	Mass of cup + wet soil	47.5
	Mass of cup + dry soil	42.67
	Mass of cup	15.24
	Mass of dry soil, Ms	27.43
	Mass of water, Mw	4.83
Otter Creek Rd #1,	Water Content, w%	17.61
B-1,	Container #	8
S-3	Mass of cup + wet soil	50.05
	Mass of cup + dry soil	44.91
	Mass of cup	15.14
	Mass of dry soil, Ms	29.77
	Mass of water, Mw	5.14
	Water Content, w%	17.27
	Avg. w%	17.44

Table D-8: Moisture Contents from Bag Samples for Highway 165

	Container #	56
	Mass of cup + wet soil	49.33
	Mass of cup + dry soil	47.41
	Mass of cup	15.34
	Mass of dry soil, Ms	32.07
	Mass of water, Mw	1.92
Hwy 165 #1,	Water Content, w%	5.99
B-1, S-1	Container #	62
	Mass of cup + wet soil	37.82
	Mass of cup + dry soil	36.26
	Mass of cup	15.85
	Mass of dry soil, Ms	20.41
	Mass of water, Mw	1.56
	Water Content, w%	7.64
	Avg. w%	6.82

	Container #	127
	Mass of cup + wet soil	36.77
	Mass of cup + dry soil	34.12
	Mass of cup	15.2
	Mass of dry soil, Ms	18.92
	Mass of water, Mw	2.65
Hwy 165 #1,	Water Content, w%	14.01
B-1,	Container #	60
S-2	Mass of cup + wet soil	40
	Mass of cup + dry soil	35.95
	Mass of cup	10.89
	Mass of dry soil, Ms	25.06
	Mass of water, Mw	4.05
	Water Content, w%	16.16
	Avg. w%	15.08

Table D-9: Moisture Contents from Bag Samples for Highway 49

	Container #	44
	Mass of cup + wet soil	47.69
	Mass of cup + dry soil	46.43
	Mass of cup	15.3
	Mass of dry soil, Ms	31.13
	Mass of water, Mw	1.26
Hwy 49 #1,	Water Content, w%	4.05
B-1,	Container #	72
S-1	Mass of cup + wet soil	45.44
	Mass of cup + dry soil	43.67
	Mass of cup	11.12
	Mass of dry soil, Ms	32.55
	Mass of water, Mw	1.77
	Water Content, w%	5.44
	Avg. w%	4.74

	Container #	54
	Mass of cup + wet soil	55.93
	Mass of cup + dry soil	54.98
	Mass of cup	15.55
	Mass of dry soil, Ms	39.43
	Mass of water, Mw	0.95
Hwy 49 #1,	Water Content, w%	2.41
в-2,	Container #	141
S-1	Mass of cup + wet soil	62.09
	Mass of cup + dry soil	60.96
	Mass of cup	15.36
	Mass of dry soil, Ms	45.6
	Mass of water, Mw	1.13
	Water Content, w%	2.48
	Avg. w%	2.44

	Container #	132
	Mass of cup + wet soil	59.96
	Mass of cup + dry soil	57.15
	Mass of cup	15.36
	Mass of dry soil, Ms	41.79
	Mass of water, Mw	2.81
Hwy 49 #2,	Water Content, w%	6.72
в-3,	Container #	65
S-1	Mass of cup + wet soil	56.35
	Mass of cup + dry soil	53.98
	Mass of cup	14.78
	Mass of dry soil, Ms	39.2
	Mass of water, Mw	2.37
	Water Content, w%	6.05
	Avg w%	6 3 0

	Avg. w%	6.39
	Container #	18
	Mass of cup + wet soil	61.98
	Mass of cup + dry soil	58.03
	Mass of cup	15.62
Hwy 49 #2, B-8, S-1	Mass of dry soil, Ms	42.41
	Mass of water, Mw	3.95
	Water Content, w%	9.31
	Container #	64
	Mass of cup + wet soil	57.44
	Mass of cup + dry soil	54.41
	Mass of cup	15.34
	Mass of dry soil, Ms	39.07
	Mass of water, Mw	3.03
	Water Content, w%	7.76

	Container #	63
	Mass of cup + wet soil	57.36
	Mass of cup + dry soil	55.23
	Mass of cup	15.67
	Mass of dry soil, Ms	39.56
	Mass of water, Mw	2.13
Hwy 49 #2,	Water Content, w%	5.38
B-4, S-1	Container #	59
	Mass of cup + wet soil	57.49
	Mass of cup + dry soil	55.57
	Mass of cup	15.04
	Mass of dry soil, Ms	40.53
	Mass of water, Mw	1.92
	Water Content, w%	4.74
	Avg. w%	5.06

Table D-10: Moisture Contents from Bag Samples for Highway 270

Avg. w%

8.53

	Container #	52
	Mass of cup + wet soil	74.1
	Mass of cup + dry soil	71.57
	Mass of cup	17.88
	Mass of dry soil, Ms	53.69
	Mass of water, Mw	2.53
Hwy 270 #1,	Water Content, w%	4.71
B-1,	Container #	B7
S-1	Mass of cup + wet soil	73.19
	Mass of cup + dry soil	70.74
	Mass of cup	17.8
	Mass of dry soil, Ms	52.94
	Mass of water, Mw	2.45
	Water Content, w%	4.63
	Avg. w%	4.67

	Container #	H-L
	Mass of cup + wet soil	92.27
	Mass of cup + dry soil	84.25
	Mass of cup	17.25
	Mass of dry soil, Ms	67
	Mass of water, Mw	8.02
Hwy 270 #1,	Water Content, w%	11.97
B-1,	Container #	GALE
S-2	Mass of cup + wet soil	79.22
	Mass of cup + dry soil	73.24
	Mass of cup	18.11
	Mass of dry soil, Ms	55.13
	Mass of water, Mw	5.98
	Water Content, w%	10.85
	Avg. w%	11.41

Table D-9 (Continued): Moisture Contents from Bag Samples for Highway 49

	Container #	166
	Mass of cup + wet soil	138
	Mass of cup + dry soil	122.9
	Mass of cup	23.57
	Mass of dry soil, Ms	99.33
	Mass of water, Mw	15.1
Hwy 270 #1,	Water Content, w%	15.20
B-1,	Container #	242
S-3	Mass of cup + wet soil	57.22
	Mass of cup + dry soil	51.43
	Mass of cup	13.47
	Mass of dry soil, Ms	37.96
	Mass of water, Mw	5.79
	Water Content, w%	15.25
	Avg. w%	15.23
	Container #	99
	Mass of cup + wet soil	61.65
	Mass of cup + dry soil	57.76
	Mass of cup	11.06
	Mass of dry soil. Ms	46.7
	Mass of water, Mw	3.89
Hwy 270 #1,	Water Content, w%	8.33
B-2, S-2	Container #	199
	Mass of cup + wet soil	62.99
	Mass of cup + dry soil	58.2
	Mass of cup	12.27
	Mass of dry soil, Ms	45.93
	Mass of water, Mw	4.79
	Water Content, w%	10.43
	Avg. w%	9.38
	Container #	53
	Mass of cup + wet soil	74.6
	Mass of cup + dry soil	71.4
	Mass of cup	17.89
	Mass of dry soil, Ms	53.51
	Mass of water, Mw	3.2
Hwy 270 #1,	Water Content, w%	5.98
В-3,	Container #	O#
S-1	Mass of cup + wet soil	74.32
	Mass of cup + dry soil	71.16
	Mass of cup	17.96
	Mass of dry soil. Ms	53.2
	Mass of water, Mw	3.16
	Water Content, w%	5.94

Avg. w%

5.96

Table D-10 (Continued): Moisture Contents from Bag Samples for Highway 270

	Container #	100
	Mass of cup + wet soil	66.88
	Mass of cup + dry soil	63.94
	Mass of cup	10.07
	Mass of dry soil, Ms	53.87
	Mass of water, Mw	2.94
Hwy 270 #1,	Water Content, w%	5.46
B-2, S-1	Container #	4
	Mass of cup + wet soil	63.72
	Mass of cup + dry soil	60.9
	Mass of cup	10.21
	Mass of dry soil, Ms	50.69
	Mass of water, Mw	2.82
	Water Content, w%	5.56
	Avg. w%	5.51

	Container #	146
	Mass of cup + wet soil	64.99
	Mass of cup + dry soil	58.86
	Mass of cup	12.52
	Mass of dry soil, Ms	46.34
	Mass of water, Mw	6.13
Hwy 270 #1,	Water Content, w%	13.23
В-2,	Container #	212
S-3	Mass of cup + wet soil	72.63
	Mass of cup + dry soil	65.33
	Mass of cup	12.32
	Mass of dry soil, Ms	53.01
	Mass of water, Mw	7.3
	Water Content, w%	13.77
	Avg. w%	13.50

	Container #	246
	Mass of cup + wet soil	73.73
	Mass of cup + dry soil	68.25
	Mass of cup	12.68
	Mass of dry soil, Ms	55.57
	Mass of water, Mw	5.48
Hwy 270 #1,	Water Content, w%	9.86
в-3,	Container #	12
S-2	Mass of cup + wet soil	58.72
	Mass of cup + dry soil	55
	Mass of cup	15.31
	Mass of dry soil, Ms	39.69
	Mass of water, Mw	3.72
	Water Content, w%	9.37
	Avg. w%	9.62

	Container #	5
	Mass of cup + wet soil	76.04
	Mass of cup + dry soil	69.03
	Mass of cup	18.07
	Mass of dry soil, Ms	50.96
	Mass of water, Mw	7.01
Hwy 270 #1,	Water Content, w%	13.76
в-3,	Container #	P-6
S-3	Mass of cup + wet soil	60.94
	Mass of cup + dry soil	55.56
	Mass of cup	18.28
	Mass of dry soil, Ms	37.28
	Mass of water, Mw	5.38
	Water Content, w%	14.43
	Avg. w%	14.09
	~ ~	
	Container #	340
	Mass of cup + wet soil	69.08
	Mass of cup + dry soil	62.61
	Mass of cup	18.41
	Mass of dry soil, Ms	44.2
	Mass of water, Mw	6.47
Hwy 270 #1,	Water Content, w%	14.64
В-5,	Container #	348
S-2	Mass of cup + wet soil	78.63
	Mass of cup + dry soil	70.66
	Mass of cup	18.45
	Mass of dry soil, Ms	52.21
	Mass of water, Mw	7.97
	Water Content, w%	15.27
	Avg. w%	14.95
	U	
	Container #	209
	Mass of cup + wet soil	82.02
	Mass of cup + dry soil	75.68
	Mass of cup	12.67
Hwy 270 #1, B-6, S-2	Mass of dry soil, Ms	63.01
	Mass of water, Mw	6.34
	Water Content, w%	10.06
	Container #	28
	Mass of cup + wet soil	59.86
	Mass of cup + dry soil	55.35
	Mass of cup	10.01
	Mass of dry soil, Ms	45.34
	Mass of water, Mw	4.51
	Water Content, w%	9.95

Avg. w%

10.00

Table D-10 (Continued): Moisture Contents from Bag Samples for Highway 270

	Container #	4
	Mass of cup + wet soil	91.52
	Mass of cup + dry soil	87.02
	Mass of cup	20.5
	Mass of dry soil, Ms	66.52
	Mass of water, Mw	4.5
Hwy 270 #1,	Water Content, w%	6.76
B-5, S-1	Container #	12
	Mass of cup + wet soil	83.02
	Mass of cup + dry soil	78.78
	Mass of cup	18.24
	Mass of dry soil, Ms	60.54
	Mass of water, Mw	4.24
	Water Content, w%	7.00
	Avg. w%	6.88

	Container #	24
	Mass of cup + wet soil	66.47
	Mass of cup + dry soil	63.28
	Mass of cup	10.1
	Mass of dry soil, Ms	53.18
	Mass of water, Mw	3.19
Hwy 270 #1,	Water Content, w%	6.00
В-6,	Container #	145
S-1	Mass of cup + wet soil	63.66
	Mass of cup + dry soil	61.05
	Mass of cup	12.07
	Mass of dry soil, Ms	48.98
	Mass of water, Mw	2.61
	Water Content, w%	5.33
	Avg. w%	5.66

	Container #	BB
	Mass of cup + wet soil	84.5
	Mass of cup + dry soil	79.3
	Mass of cup	18.01
	Mass of dry soil, Ms	61.29
	Mass of water, Mw	5.2
Hwy 270 #1,	Water Content, w%	8.48
B-6, S-3	Container #	2AE
	Mass of cup + wet soil	75.46
	Mass of cup + dry soil	70.83
	Mass of cup	18.06
	Mass of dry soil, Ms	52.77
	Mass of water, Mw	4.63
	Water Content, w%	8.77
	Avg. w%	8.63

	Container #	214
	Mass of cup + wet soil	61.74
	Mass of cup + dry soil	58.99
	Mass of cup	9.6
	Mass of dry soil, Ms	49.39
	Mass of water, Mw	2.75
Hwy 270 #1,	Water Content, w%	5.57
B-7,	Container #	224
S-1	Mass of cup + wet soil	62.48
	Mass of cup + dry soil	59.71
	Mass of cup	12.08
	Mass of dry soil, Ms	47.63
	Mass of water, Mw	2.77
	Water Content, w%	5.82
	Avg. w%	5.69
	Container #	58
	Mass of cup + wet soil	70.76
	Mass of cup + dry soil	61.51
	Mass of cup	15.35
	Mass of dry soil. Ms	46.16
	Mass of water, Mw	9.25
Hwy 270 #2.	Water Content, w%	20.04
B-1.	Container #	TAH5
S-1	Mass of cup + wet soil	68.88
5-1	Mass of cup + dry soil	60.02
	Mass of cun	15.48
	Mass of dry soil Ms	44 54
	Mass of water Mw	8 86
	Water Content, w%	19.89
	Avg. w%	19.97
	Container #	140
	Mass of cup + wet soil	70,47
	Mass of cup + dry soil	60.94
	Mass of cup	11.01
	Mass of dry soil Ms	49.93
	Mass of water Mw	9 53
Hwy 270 #2.	Water Content w%	19.09
B-2, S-1	Container #	51
	Mass of cup + wet soil	67 12
	Mass of cup + dry soil	56.68
	Mass of cup	14 54
	Mass of dry soil Ma	42.14
	Moss of water May	10.44
	Water Content well	24 77
	water Content, w%	24.77
	Avg. w%	21.95

Avg. w%

Table D-10 (Continued): Moisture Contents from Bag Samples for Highway 270

	Container #	140
	Mass of cup + wet soil	63.8
	Mass of cup + dry soil	57.32
	Mass of cup	12.71
	Mass of dry soil, Ms	44.61
Hwy 270 #1, B-7, S-2	Mass of water, Mw	6.48
	Water Content, w%	14.53
	Container #	62
	Mass of cup + wet soil	59.95
	Mass of cup + dry soil	53.11
	Mass of cup	11.01
	Mass of dry soil, Ms	42.1
	Mass of water, Mw	6.84
	Water Content, w%	16.25
	Avg. w%	15.39

	Container #	11
	Mass of cup + wet soil	59.07
	Mass of cup + dry soil	52.05
	Mass of cup	12.04
	Mass of dry soil, Ms	40.01
	Mass of water, Mw	7.02
Hwy 270 #2,	Water Content, w%	17.55
B-1,	Container #	86
S-2	Mass of cup + wet soil	64.96
	Mass of cup + dry soil	57.69
	Mass of cup	15.24
	Mass of dry soil, Ms	42.45
	Mass of water, Mw	7.27
	Water Content, w%	17.13
	Avg. w%	17.34

Hwy 270 #2, B-2, S-2	Container #	68
	Mass of cup + wet soil	58.15
	Mass of cup + dry soil	50.5
	Mass of cup	15.66
	Mass of dry soil, Ms	34.84
	Mass of water, Mw	7.65
	Water Content, w%	21.96
	Container #	26
	Mass of cup + wet soil	53.21
	Mass of cup + dry soil	45.87
	Mass of cup	10.79
	Mass of dry soil, Ms	35.08
	Mass of water, Mw	7.34
	Water Content, w%	20.92
	Avg. w%	21.44
	Container #	102
----------------------	-------------------------------	-------
	Mass of cup + wet soil	42.24
	Mass of cup + dry soil	37.36
	Mass of cup	15.28
	Mass of dry soil, Ms	22.08
	Mass of water, Mw	4.88
Hwy 270 #2,	Water Content, w%	22.10
B-2.	Container #	50
S-3	Mass of cup + wet soil	57 18
~ -	Mass of $cup + dry soil$	50.89
	Mass of cup	15.18
	Mass of dry soil Me	35 71
	Moss of water May	6 20
	Water Content w/	17.61
	water Content, w76	17.01
	Avg. w%	19.80
		100
	Container #	133
	Mass of cup + wet soil	57.58
	Mass of cup + dry soil	49.31
	Mass of cup	10.94
	Mass of dry soil, Ms	38.37
	Mass of water, Mw	8.27
Hwy 270 #2,	Water Content, w%	21.55
в-3,	Container #	33A
S-2	Mass of cup + wet soil	73.57
	Mass of cup + dry soil	64.19
	Mass of cup	18.15
	Mass of dry soil, Ms	46.04
	Mass of water, Mw	9.38
	Water Content, w%	20.37
	Avg. w%	20.96
	Container #	20
	Mass of cup + wet soil	54.32
	Mass of cup + dry soil	50.59
	Mass of cup	15.1
	Mass of dry soil Me	35.49
	Mass of water Mar	3 73
Hwy 270 #2	Water Content w ^{0/}	10.51
11wy 270 #2, D_5	Container #	55
ы- <i>э</i> , я 1	Mass of our 1 mst 1	23
5-1	Iviass of cup + wet soil	04.80
	Mass of cup + dry soil	60.8
	Mass of cup	15.39
	Mass of dry soil, Ms	45.41
	Mass of water, Mw	4.06
	Water Content, w%	8.94
	Avg. w%	9.73

Table D-10 (Continued): Moisture Contents from Bag Samples for Highway 270

	Container #	85
	Mass of cup + wet soil	64.71
	Mass of cup + dry soil	58.94
	Mass of cup	15.18
	Mass of dry soil, Ms	43.76
	Mass of water, Mw	5.77
Hwy 270 #2,	Water Content, w%	13.19
B-3, S-1	Container #	108
	Mass of cup + wet soil	66.57
	Mass of cup + dry soil	63.51
	Mass of cup	15.34
	Mass of dry soil, Ms	48.17
	Mass of water, Mw	3.06
	Water Content, w%	6.35
	Avg. w%	9.77

	Container #	3
	Mass of cup + wet soil	80
	Mass of cup + dry soil	68.92
	Mass of cup	20.33
	Mass of dry soil, Ms	48.59
	Mass of water, Mw	11.08
Hwy 270 #2,	Water Content, w%	22.80
в-3,	Container #	B5
S-3	Mass of cup + wet soil	73.57
	Mass of cup + dry soil	64.19
	Mass of cup	18.15
	Mass of dry soil, Ms	46.04
	Mass of water, Mw	9.38
	Water Content, w%	20.37
	Avg. w%	21.59

	Container #	146
	Mass of cup + wet soil	53.06
	Mass of cup + dry soil	46.14
	Mass of cup	11.15
	Mass of dry soil, Ms	34.99
	Mass of water, Mw	6.92
Hwy 270 #2,	Water Content, w%	19.78
в-5,	Container #	21
S-2	Mass of cup + wet soil	62.7
	Mass of cup + dry soil	54.86
	Mass of cup	12.54
	Mass of dry soil, Ms	42.32
	Mass of water, Mw	7.84
	Water Content, w%	18.53
	Avg. w%	19.15

	Container #	15
	Mass of cup + wet soil	69.48
	Mass of cup + dry soil	65.99
	Mass of cup	10.1
	Mass of dry soil, Ms	55.89
	Mass of water, Mw	3.49
Hwy 65 #1,	Water Content, w%	6.24
B-1,	Container #	B6
S-1	Mass of cup + wet soil	71.63
	Mass of cup + dry soil	67.36
	Mass of cup	17.8
	Mass of dry soil, Ms	49.56
	Mass of water, Mw	4.27
	Water Content, w%	8.62
	Avg. w%	7.43
	Container #	B25
	Mass of cup + wet soil	98.5
	Mass of cup + dry soil	85.72
	Mass of cup	10.14
	Mass of dry soil. Ms	75.58
	Mass of water, Mw	12.78
Hwy 65 #1.	Water Content, w%	16.91
B-5, S-1	Container #	133
	Mass of cup + wet soil	69.11
	Mass of cup + dry soil	60.61
	Mass of cup	12.24
	Mass of dry soil. Ms	48.37
	Mass of water, Mw	8.5
	Water Content, w%	17.57
	Avg. w%	17.24
	Container #	H-4
	Mass of cup + wet soil	77.97
	Mass of cup + dry soil	71.75
	Mass of cup	18.07
	Mass of dry soil. Ms	53.68
Hury 65 #1	11466 61 41 9 86119 116	22100
	Mass of water, Mw	6.22
Hwy 65 #1.	Mass of water, Mw Water Content w%	6.22
Hwy 65 #1, B-5.	Mass of water, Mw Water Content, w%	6.22 11.59 T4
Hwy 65 #1, B-5, S-2	Mass of water, Mw Water Content, w% Container # Mass of cup + wet soil	6.22 11.59 T4 99.14
Hwy 65 #1, B-5, S-2	Mass of water, Mw Water Content, w% Container # Mass of cup + wet soil Mass of cup + dry soil	6.22 11.59 T4 99.14 89.8
Hwy 65 #1, B-5, S-2	Mass of water, Mw Water Content, w% Container # Mass of cup + wet soil Mass of cup + dry soil Mass of cup	6.22 11.59 T4 99.14 89.8 22.47
Hwy 65 #1, B-5, S-2	Mass of water, Mw Water Content, w% Container # Mass of cup + wet soil Mass of cup + dry soil Mass of cup	6.22 11.59 T4 99.14 89.8 22.47 67.33
Hwy 65 #1, B-5, S-2	Mass of water, Mw Water Content, w% Container # Mass of cup + wet soil Mass of cup + dry soil Mass of cup Mass of dry soil, Ms Mass of water Mw	6.22 11.59 T4 99.14 89.8 22.47 67.33 9 34

Avg. w%

12.73

Table D-11: Moisture Contents from Bag Samples for Highway 65

	Container #	HBJ 2A
	Mass of cup + wet soil	65.2
	Mass of cup + dry soil	57.91
	Mass of cup	17.82
	Mass of dry soil, Ms	40.09
	Mass of water, Mw	7.29
Hwy 65 #1,	Water Content, w%	18.18
B-2, S-1	Container #	ELK
	Mass of cup + wet soil	59.07
	Mass of cup + dry soil	52.88
	Mass of cup	18.06
	Mass of dry soil, Ms	34.82
	Mass of water, Mw	6.19
	Water Content, w%	17.78
	Avg. w%	17.98

	Container #	S
	Mass of cup + wet soil	74.4
	Mass of cup + dry soil	64.03
	Mass of cup	13.78
	Mass of dry soil, Ms	50.25
	Mass of water, Mw	10.37
Hwy 65 #1,	Water Content, w%	20.64
в-7,	Container #	G-7
S-2	Mass of cup + wet soil	99.61
	Mass of cup + dry soil	86.5
	Mass of cup	20.04
	Mass of dry soil, Ms	66.46
	Mass of water, Mw	13.11
	Water Content, w%	19.73
	Avg. w%	20.18

	Container #	48
	Mass of cup + wet soil	74.86
	Mass of cup + dry soil	72.75
	Mass of cup	15.3
	Mass of dry soil, Ms	57.45
	Mass of water, Mw	2.11
Hwy 65 #1,	Water Content, w%	3.67
B-7,	Container #	91
S-1	Mass of cup + wet soil	64.71
	Mass of cup + dry soil	62.2
	Mass of cup	10.94
	Mass of dry soil, Ms	51.26
	Mass of water, Mw	2.51
	Water Content, w%	4.90
	Avg. w%	4.28

	Container #	BB-2
	Mass of cup + wet soil	56.85
	Mass of cup + dry soil	52.35
	Mass of cup	13.87
	Mass of dry soil, Ms	38.48
	Mass of water, Mw	4.5
Hwy 65 #1,	Water Content, w%	11.69
в-5,	Container #	H-6
S-3	Mass of cup + wet soil	65.41
	Mass of cup + dry soil	60.77
	Mass of cup	18.33
	Mass of dry soil, Ms	42.44
	Mass of water, Mw	4.64
	Water Content, w%	10.93
	Avg. w%	11.31

Table D-11 (Continued): Moisture Contents from Bag Samples for Highway 65

	Container #	153
	Mass of cup + wet soil	146.99
	Mass of cup + dry soil	131.28
	Mass of cup	31.84
	Mass of dry soil, Ms	99.44
	Mass of water, Mw	15.71
Hwy 65 #10,	Water Content, w%	15.80
в-7,	Container #	135
S-1	Mass of cup + wet soil	53.34
	Mass of cup + dry soil	47.73
	Mass of cup	12.58
	Mass of dry soil, Ms	35.15
	Mass of water, Mw	5.61
	Water Content, w%	15.96
	Avg. w%	15.88

	Container #	30
	Mass of cup + wet soil	67.92
	Mass of cup + dry soil	60.82
	Mass of cup	15.12
	Mass of dry soil, Ms	45.7
	Mass of water, Mw	7.1
Hwy 65 #10,	Water Content, w%	15.54
B-6, S-1	Container #	10
	Mass of cup + wet soil	133.66
	Mass of cup + dry soil	119
	Mass of cup	23.6
	Mass of dry soil, Ms	95.4
	Mass of water, Mw	14.66
	Water Content, w%	15.37
	Avg. w%	15.45

	Container #	156
	Mass of cup + wet soil	148.14
	Mass of cup + dry soil	138.51
	Mass of cup	32.03
	Mass of dry soil, Ms	106.48
	Mass of water, Mw	9.63
Hwy 65 #11,	Water Content, w%	9.04
B-4,	Container #	13
S-1	Mass of cup + wet soil	48.95
	Mass of cup + dry soil	45.8
	Mass of cup	10.11
	Mass of dry soil, Ms	35.69
	Mass of water, Mw	3.15
	Water Content, w%	8.83
	Avg. w%	8.93

	Container #	3A
	Mass of cup + wet soil	68.37
	Mass of cup + dry soil	64.43
	Mass of cup	12.47
	Mass of dry soil, Ms	51.96
	Mass of water, Mw	3.94
Hwy 65 #12,	Water Content, w%	7.58
В-2,	Container #	3F
S-1	Mass of cup + wet soil	57.95
	Mass of cup + dry soil	54.07
	Mass of cup	12.35
	Mass of dry soil, Ms	41.72
	Mass of water, Mw	3.88
	Water Content, w%	9.30
	Avg. w%	8.44

	Container #	610
	Mass of cup + wet soil	73.45
	Mass of cup + dry soil	69.86
	Mass of cup	13.05
	Mass of dry soil, Ms	56.81
	Mass of water, Mw	3.59
Hwy 71 #1,	Water Content, w%	6.32
B-1,	Container #	B10
S-1	Mass of cup + wet soil	83.87
	Mass of cup + dry soil	79.93
	Mass of cup	17.84
	Mass of dry soil Ms	62.09
	Mass of water Mw	3.94
	Water Content w%	635
	Avg w%	633
	Avg. w/0	0.55
	Container #	11
	Mass of cup + wet soil	60.36
	Mass of cup + wet soil	54.51
	Mass of cup + ury son	12 70
	Mass of dru sail Ma	12.79
	Mass of dry soil, Mis	41./2
TT 71 #1	Mass of water, MW	5.85
HWy / 1 #1,	water Content, w%	14.02
в-з,	Container #	#IA
5-1	Mass of cup + wet soil	77.14
	Mass of cup + dry soil	70.02
	Mass of cup	17.9
	Mass of dry soil, Ms	52.12
	Mass of water, Mw	7.12
	Water Content, w%	13.66
	Avg. w%	13.84
	Container #	CAT
	Mass of cup + wet soil	89.7
	Mass of cup + dry soil	82.32
	Mass of cup	13.81
	Mass of dry soil, Ms	68.51
	Mass of water, Mw	7.38
Hwy 71 #1,	Water Content, w%	10.77
B-5, S-2	Container #	DOG
	Mass of cup + wet soil	108.13
	Mass of cup + dry soil	100.33
	Mass of cup	20.11
	Mass of dry soil, Ms	80.22
	Mass of water. Mw	7.8
	Water Content, w%	9.72
	Avg. w%	10.25

Table D-12: Moisture Contents from Bag Samples for Highway 71 (#1)

	Container #	6 VII
	Mass of cup + wet soil	71.55
	Mass of cup + dry soil	66.71
	Mass of cup	18.14
	Mass of dry soil, Ms	48.57
	Mass of water, Mw	4.84
Hwy 71 #1,	Water Content, w%	9.96
B-1,	Container #	KBJ 3B
S-2	Mass of cup + wet soil	84.8
	Mass of cup + dry soil	76.87
	Mass of cup	17.76
	Mass of dry soil, Ms	59.11
	Mass of water, Mw	7.93
	Water Content, w%	13.42
	Avg. w%	11.69

	Container #	+
	Mass of cup + wet soil	121.26
	Mass of cup + dry soil	116.94
	Mass of cup	16.73
	Mass of dry soil, Ms	100.21
	Mass of water, Mw	4.32
Hwy 71 #1,	Water Content, w%	4.31
в-5,	Container #	#1
S-1	Mass of cup + wet soil	80.03
	Mass of cup + dry soil	77.46
	Mass of cup	12.53
	Mass of dry soil, Ms	64.93
	Mass of water, Mw	2.57
	Water Content, w%	3.96
	Avg. w%	4.13

	Container #	-2
	Mass of cup + wet soil	66.57
	Mass of cup + dry soil	61.29
	Mass of cup	18.35
	Mass of dry soil, Ms	42.94
	Mass of water, Mw	5.28
Hwy 71 #1,	Water Content, w%	12.30
В-5,	Container #	-3
S-3	Mass of cup + wet soil	61.46
	Mass of cup + dry soil	56.6
	Mass of cup	18.32
	Mass of dry soil, Ms	38.28
	Mass of water, Mw	4.86
	Water Content, w%	12.70
	Avg. w%	12.50

	Container #	EX
	Mass of cup + wet soil	62.73
	Mass of cup + dry soil	57.55
	Mass of cup	18.03
	Mass of dry soil, Ms	39.52
	Mass of water, Mw	5.18
Hwy 71 #1,	Water Content, w%	13.11
В-8,	Container #	EY
S-1	Mass of cup + wet soil	55.06
	Mass of cup + dry soil	51.46
	Mass of cup	18.35
	Mass of dry soil, Ms	33.11
	Mass of water, Mw	3.6
	Water Content, w%	10.87
	Avg. w%	11.99

Table D-12 (Continued): Moisture Contents from Bag Samples for Highway 71 (#1)

	Container #	KBJ 1B
	Mass of cup + wet soil	79.09
	Mass of cup + dry soil	70.9
	Mass of cup	18.08
	Mass of dry soil, Ms	52.82
	Mass of water, Mw	8.19
II 71 #1	Water Content, w%	15.51
пwy /1 #1, Ъ.,11-	Container #	RAT
Bulk	Mass of cup + wet soil	70.55
	Mass of cup + dry soil	62.87
	Mass of cup	12.3
	Mass of dry soil, Ms	50.57
	Mass of water, Mw	7.68
	Water Content, w%	15.19
	Avg. w%	15.35

Table D-13: Moisture Contents from Bag Samples for Highway 71 (#10-#13)

	Container #	102
	Mass of cup + wet soil	64.32
	Mass of cup + dry soil	51.74
	Mass of cup	11.08
	Mass of dry soil, Ms	40.66
	Mass of water, Mw	12.58
Hwy 71 #10,	Water Content, w%	30.94
в-2,	Container #	43
S-1	Mass of cup + wet soil	77.37
	Mass of cup + dry soil	62.05
	Mass of cup	11.01
	Mass of dry soil, Ms	51.04
	Mass of water, Mw	15.32
	Water Content, w%	30.02
	Avg. w%	30.48

-		
	Container #	132
	Mass of cup + wet soil	50.51
	Mass of cup + dry soil	41.71
	Mass of cup	11.06
	Mass of dry soil, Ms	30.65
	Mass of water, Mw	8.8
Hwy 71 #10,	Water Content, w%	28.71
в-3,	Container #	12
S-1	Mass of cup + wet soil	43.17
	Mass of cup + dry soil	33.31
	Mass of cup	10.99
	Mass of dry soil, Ms	22.32
	Mass of water, Mw	9.86
	Water Content, w%	44.18
	Avg. w%	36.44

	Container #	87
	Mass of cup + wet soil	49.17
	Mass of cup + dry soil	41.82
	Mass of cup	11.04
	Mass of dry soil, Ms	30.78
	Mass of water, Mw	7.35
Hwy 71 #10,	Water Content, w%	23.88
в-2,	Container #	141
S-2	Mass of cup + wet soil	63.26
	Mass of cup + dry soil	53.15
	Mass of cup	11.06
	Mass of dry soil, Ms	42.09
	Mass of water, Mw	10.11
	Water Content, w%	24.02
	Avg. w%	23.95

	Container #	62
	Mass of cup + wet soil	53.64
	Mass of cup + dry soil	40.02
	Mass of cup	11
	Mass of dry soil, Ms	29.02
	Mass of water, Mw	13.62
Hwy 71 #10,	Water Content, w%	46.93
в-3,	Container #	S
S-2	Mass of cup + wet soil	64.79
	Mass of cup + dry soil	54.7
	Mass of cup	13.78
	Mass of dry soil, Ms	40.92
	Mass of water, Mw	10.09
	Water Content, w%	24.66
	Avg. w%	35.80

	Container #	40
	Mass of cup + wet soil	62.56
	Mass of cup + dry soil	48.86
	Mass of cup	10.95
	Mass of dry soil, Ms	37.91
	Mass of water, Mw	13.7
Hwy 71 #11,	Water Content, w%	36.14
В-2,	Container #	113
S-1	Mass of cup + wet soil	43.83
	Mass of cup + dry soil	35.44
	Mass of cup	10.98
	Mass of dry soil, Ms	24.46
	Mass of water, Mw	8.39
	Water Content, w%	34.30
	Avg. w%	35.22
	Container #	111
	Mass of cup + wet soil	58.45
	Mass of cup + dry soil	45.6
	Mass of cup	11.21
	Mass of dry soil, Ms	34.39
	Mass of water, Mw	12.85
Hwy 71 #11,	Water Content, w%	37.37
в-3,	Container #	264
S-1	Mass of cup + wet soil	64.69
	Mass of cup + dry soil	53.08
	Mass of cup	19.36
	Mass of dry soil, Ms	33.72
	Mass of water, Mw	11.61
	Water Content, w%	34.43
	Avg. w%	35.90
	Container #	KBJ3
	Mass of cup + wet soil	50.09
	Mass of cup + dry soil	41.26
	Mass of cup	17.85
	Mass of dry soil, Ms	23.41
	Mass of water, Mw	8.83
Hwy 71 #12,	Water Content, w%	37.72
в-2,	Container #	5A
S-1	Mass of cup + wet soil	44
	Mass of cup + dry soil	35.71
	Mass of cup	12.65
	Mass of dry soil, Ms	23.06
	Mass of water, Mw	8.29
	Water Content, w%	35.95
	Avg. w%	36.83

Table D-13 (Continued): Moisture Contents from Bag Samples for Highway 71 (#10-#13)

	Container #	135
	Mass of cup + wet soil	61.1
	Mass of cup + dry soil	55.41
	Mass of cup	11
	Mass of dry soil, Ms	44.41
	Mass of water, Mw	5.69
Hwy 71 #10,	Water Content, w%	12.81
в-2,	Container #	MILL5
S-2	Mass of cup + wet soil	68.35
	Mass of cup + dry soil	61.6
	Mass of cup	12.61
	Mass of dry soil, Ms	48.99
	Mass of water, Mw	6.75
	Water Content, w%	13.78
	Avg. w%	13.30

	Container #	TAH1
	Mass of cup + wet soil	62.6
	Mass of cup + dry soil	57.78
	Mass of cup	11.14
	Mass of dry soil, Ms	46.64
	Mass of water, Mw	4.82
Hwy 71 #11,	Water Content, w%	10.33
B-3, S-2	Container #	110
	Mass of cup + wet soil	56.85
	Mass of cup + dry soil	52.09
	Mass of cup	10.89
	Mass of dry soil, Ms	41.2
	Mass of water, Mw	4.76
	Water Content, w%	11.55
	Avg. w%	10.94

	Container #	5B
	Mass of cup + wet soil	64.06
	Mass of cup + dry soil	52.83
	Mass of cup	14.01
	Mass of dry soil, Ms	38.82
	Mass of water, Mw	11.23
Hwy 71 #12,	Water Content, w%	28.93
в-2,	Container #	#8
B-2	Mass of cup + wet soil	51.08
	Mass of cup + dry soil	43.85
	Mass of cup	18.02
	Mass of dry soil, Ms	25.83
	Mass of water, Mw	7.23
	Water Content, w%	27.99
	Avg. w%	28.46

	Container #	B6
	Mass of cup + wet soil	40.62
	Mass of cup + dry soil	33.02
	Mass of cup	12.18
	Mass of dry soil, Ms	20.84
	Mass of water, Mw	7.6
Hwy 71 #12,	Water Content, w%	36.47
в-3,	Container #	340
S-1	Mass of cup + wet soil	54.58
	Mass of cup + dry soil	43.38
	Mass of cup	12.64
	Mass of dry soil, Ms	30.74
	Mass of water, Mw	11.2
	Water Content, w%	36.43
	Avg. w%	36.45

Table D-13 (Continued): Moisture Contents from Bag Samples for Highway 71 (#10-#13)

	Container #	115
	Mass of cup + wet soil	65.22
	Mass of cup + dry soil	52.61
	Mass of cup	11.29
	Mass of dry soil, Ms	41.32
	Mass of water, Mw	12.61
Hwy 71 #13,	Water Content, w%	30.52
B_7	Containar #	()
D-2,	Container #	62
S-1	Mass of cup + wet soil	94.5
S-1	Mass of cup + wet soil Mass of cup + dry soil	62 94.5 75.16
S-1	Mass of cup + wet soil Mass of cup + dry soil Mass of cup	62 94.5 75.16 11.02
S-1	Mass of cup + wet soil Mass of cup + dry soil Mass of cup Mass of dry soil, Ms	62 94.5 75.16 11.02 64.14
S-1	Mass of cup + wet soil Mass of cup + dry soil Mass of cup Mass of dry soil, Ms Mass of water, Mw	62 94.5 75.16 11.02 64.14 19.34
S-1	Mass of cup + wet soil Mass of cup + dry soil Mass of cup Mass of dry soil, Ms Mass of water, Mw Water Content, w%	62 94.5 75.16 11.02 64.14 19.34 30.15

	Container #	104
	Mass of cup + wet soil	44.57
	Mass of cup + dry soil	36.72
	Mass of cup	15.66
	Mass of dry soil, Ms	21.06
	Mass of water, Mw	7.85
Hwy 71 #12,	Water Content, w%	37.27
в-3,	Container #	54CW
S-2	Mass of cup + wet soil	34.65
	Mass of cup + dry soil	29.14
	Mass of cup	12.37
	Mass of dry soil, Ms	16.77
	Mass of water, Mw	5.51
	Water Content, w%	32.86
	Avg. w%	35.07
	Container #	68

	Container #	68
	Mass of cup + wet soil	86
	Mass of cup + dry soil	69.76
	Mass of cup	15.9
	Mass of dry soil, Ms	53.86
	Mass of water, Mw	16.24
Hwy 71 #13,	Water Content, w%	30.15
в-2,	Container #	133
S-2	Mass of cup + wet soil	60.49
	Mass of cup + dry soil	49.23
	Mass of cup	10.94
	Mass of dry soil, Ms	38.29
	Mass of water, Mw	11.26
	Water Content, w%	29.41
	Avg. w%	29.78

Table D-14: Moisture Contents from Bag Samples for Highway 412 (#10-#15)

	Container #	101
	Mass of cup + wet soil	61.69
	Mass of cup + dry soil	60.19
	Mass of cup	11.02
	Mass of dry soil, Ms	49.17
	Mass of water, Mw	1.5
Hwy 412 #10,	Water Content, w%	3.05
B-1,	Container #	80
S-1	Mass of cup + wet soil	72.5
	Mass of cup + dry soil	70.71
	Mass of cup	11.21
	Mass of dry soil, Ms	59.5
	Mass of water, Mw	1.79
	Water Content, w%	3.01
	Avg. w%	3.03

	Container #	TAH6
	Mass of cup + wet soil	46.41
	Mass of cup + dry soil	39.35
	Mass of cup	15.63
	Mass of dry soil, Ms	23.72
	Mass of water, Mw	7.06
Hwy 412 #10,	Water Content, w%	29.76
B-1,	Container #	#1C
S-2	Mass of cup + wet soil	46.71
	Mass of cup + dry soil	38.35
	Mass of cup	10.86
	Mass of dry soil, Ms	27.49
	Mass of water, Mw	8.36
	Water Content, w%	30.41
	Avg. w%	30.09

	Container #	107
	Mass of cup + wet soil	60.17
	Mass of cup + dry soil	58.07
	Mass of cup	11.04
	Mass of dry soil, Ms	47.03
	Mass of water, Mw	2.1
Hwy 412 #10,	Water Content, w%	4.47
В-2,	Container #	55
S-1	Mass of cup + wet soil	50.62
	Mass of cup + dry soil	48.9
	Mass of cup	10.6
	Mass of dry soil, Ms	38.3
	Mass of water, Mw	1.72
	Water Content, w%	4.49
	Avg. w%	4.48
	Container #	ЈК
	Mass of cup + wet soil	50.32
	Mass of cup + dry soil	44.38
	Mass of cup	18.12
	Mass of dry soil, Ms	26.26
	Mass of water, Mw	5.94
Hwy 412 #11,	Water Content, w%	22.62
B-1,	Container #	B25
S-2	Mass of cup + wet soil	59.3
	Mass of cup + dry soil	54.2
	Mass of cup	10.16
	Mass of dry soil, Ms	44.04
	Mass of water, Mw	5.1
	Water Content, w%	11.58
	Avg. w%	17.10
	Container #	105
	Mass of cup + wet soil	49.84
	Mass of cup + dry soil	45.79
	Mass of cup	10.86
	Mass of dry soil, Ms	34.93
	Mass of water, Mw	4.05
Hwy 412 #11,	Water Content, w%	11.59
B-2, S-2	Container #	45
	Mass of cup + wet soil	44.67
	Mass of cup + dry soil	38.11
	Mass of cup	10.92
	Mass of dry soil, Ms	27.19
	Mass of water, Mw	6.56
	Water Content, w%	24.13
	Avg. w%	17.86

Table D-14 (Continued): Moisture Contents from Bag Samples for Highway 412 (#10-#15)

	Container #	199
1	Mass of cup + wet soil	63.41
I	Mass of cup + dry soil	62.05
	Mass of cup	12.26
	Mass of dry soil, Ms	49.79
	Mass of water, Mw	1.36
Hwy 412 #11,	Water Content, w%	2.73
B-1,	Container #	44
S-1	Mass of cup + wet soil	64.28
]	Mass of cup + dry soil	62.71
	Mass of cup	15.31
	Mass of dry soil, Ms	47.4
	Mass of water, Mw	1.57
	Water Content, w%	3.31
	Avg. w%	3.02

	Container #	-3
	Mass of cup + wet soil	67.65
	Mass of cup + dry soil	64.56
	Mass of cup	12.7
	Mass of dry soil, Ms	51.86
	Mass of water, Mw	3.09
Hwy 412 #11,	Water Content, w%	5.96
в-2,	Container #	4
S-1	Mass of cup + wet soil	94.07
	Mass of cup + dry soil	89.23
	Mass of cup	20.52
	Mass of dry soil, Ms	68.71
	Mass of water, Mw	4.84
	Water Content, w%	7.04
	Avg. w%	6.50

	Container #	24
	Mass of cup + wet soil	39.75
	Mass of cup + dry soil	33.91
	Mass of cup	10.95
	Mass of dry soil, Ms	22.96
	Mass of water, Mw	5.84
Hwy 412 #12,	Water Content, w%	25.44
B-1, S-1	Container #	Х
	Mass of cup + wet soil	64.88
	Mass of cup + dry soil	54.9
	Mass of cup	13.82
	Mass of dry soil, Ms	41.08
	Mass of water, Mw	9.98
	Water Content, w%	24.29
	Avg. w%	24.86

	Container #	DOG
	Mass of cup + wet soil	65.59
	Mass of cup + dry soil	55.77
	Mass of cup	20.13
	Mass of dry soil, Ms	35.64
	Mass of water, Mw	9.82
Hwy 412 #12,	Water Content, w%	27.55
В-2,	Container #	CAT
S-1	Mass of cup + wet soil	55.01
	Mass of cup + dry soil	45.68
	Mass of cup	13.82
	Mass of dry soil, Ms	31.86
	Mass of water, Mw	9.33
	Water Content, w%	29.28
	Avg. w%	28.42
	Container #	F5
	Mass of cup + wet soil	55.99
	Mass of cup + dry soil	45.24
	Mass of cup	12.48
	Mass of dry soil, Ms	32.76
	Mass of water, Mw	10.75
Hwy 412 #12,	Water Content, w%	32.81
B-4, S-1	Container #	6
	Mass of cup + wet soil	60.2
	Mass of cup + dry soil	53.36
	Mass of cup	12.58
	Mass of dry soil, Ms	40.78
	Mass of water, Mw	6.84
	Water Content, w%	16.77
	Avg. w%	24.79
	Container #	BB-4L
	Mass of cup + wet soil	52.77
	Mass of cup + dry soil	48.53
	Mass of cup	18.29
	Mass of dry soil, Ms	30.24
	Mass of water, Mw	4.24
Hwy 412 #13,	Water Content, w%	14.02
B-1,	Container #	64
S-1	Mass of cup + wet soil	54.2
	Mass of cup + dry soil	50.56
	Mass of cup	10.89
	Mass of dry soil, Ms	39.67
	Mass of water, Mw	3.64
	Water Content 11/0/	018

Avg. w%

11.60

Table D-14 (Continued): Moisture Contents from Bag Samples for Highway 412 (#10-#15)

	Container #	RED24%
	Mass of cup + wet soil	56.47
	Mass of cup + dry soil	49.76
	Mass of cup	12.51
	Mass of dry soil, Ms	37.25
	Mass of water, Mw	6.71
Hwy 412 #12,	Water Content, w%	18.01
в-3,	Container #	3
S-1	Mass of cup + wet soil	74.8
	Mass of cup + dry soil	65.37
	Mass of cup	20.29
	Mass of dry soil, Ms	45.08
	Mass of water, Mw	9.43
	Water Content, w%	20.92
	Avg. w%	19.47
	-	

	Container #	BB2
	Mass of cup + wet soil	69.66
	Mass of cup + dry soil	61.31
	Mass of cup	13.87
	Mass of dry soil, Ms	47.44
	Mass of water, Mw	8.35
Hwy 412 #12,	Water Content, w%	17.60
в-5,	Container #	-2
S-1	Mass of cup + wet soil	48.57
	Mass of cup + dry soil	41.03
	Mass of cup	12.6
	Mass of dry soil, Ms	28.43
	Mass of water, Mw	7.54
	Water Content, w%	26.52
	Avg. w%	22.06

	Container #	ELK
	Mass of cup + wet soil	67.96
	Mass of cup + dry soil	60.05
	Mass of cup	12.49
	Mass of dry soil, Ms	47.56
	Mass of water, Mw	7.91
Hwy 412 #13,	Water Content, w%	16.63
в-2,	Container #	85
S-1	Mass of cup + wet soil	72.3
	Mass of cup + dry soil	65
	Mass of cup	15.19
	Mass of dry soil, Ms	49.81
	Mass of water, Mw	7.3
	Water Content, w%	14.66
	Avg. w%	15.64

	Container #	17
	Mass of cup + wet soil	72.94
	Mass of cup + dry soil	63.83
	Mass of cup	15.24
	Mass of dry soil, Ms	48.59
	Mass of water, Mw	9.11
Hwy 412 #13,	Water Content, w%	18.75
В-3,	Container #	127
S-1	Mass of cup + wet soil	65.11
	Mass of cup + dry soil	57.77
	Mass of cup	15.21
	Mass of dry soil, Ms	42.56
	Mass of water, Mw	7.34
	Water Content, w%	17.25
	Avg. w%	18.00
		10,00
	Container #	140
	Mass of cup + wet soil	55.86
	Mass of cup + dry soil	49.55
	Mass of cup	11.02
	Mass of dry soil. Ms	38.53
	Mass of water, Mw	6.31
Hwy 412 #13.	Water Content, w%	16.38
B-5.	Container #	20
S-1	Mass of cup + wet soil	43.61
~ -	Mass of cup + dry soil	38.52
	Mass of cup	15.13
	Mass of dry soil Ms	23 39
	Mass of water Mw	5.09
	Water Content w%	21.76
	Avg w%	19.07
	1 2115.1170	17.07
	Container #	33
	Mass of cup + wet soil	49.53
	Mass of cup + dry soil	43.93
	Mass of cup	10.99
	Mass of dry soil Ms	32.94
	Mass of water Mw	56
Hwy 412 #14	Water Content w%	17.00
B-2, S-1	Container #	17.00
	Mass of cup + wet soil	61.05
	Mass of cup + dry soil	56 37
	Mass of cup + ury soll	15 21
	Mass of dry soil Ma	41 16
	Moss of water May	41,10
	Water Content	4.00
	water Content, w%	11.3/
	Avg. w%	14,19

	Container #	B7
	Mass of cup + wet soil	55.36
	Mass of cup + dry soil	49.42
	Mass of cup	12.12
	Mass of dry soil, Ms	37.3
	Mass of water, Mw	5.94
Hwy 412 #13,	Water Content, w%	15.92
B-4, S-1	Container #	112
	Mass of cup + wet soil	63.03
	Mass of cup + dry soil	56.21
	Mass of cup	15.35
	Mass of dry soil, Ms	40.86
	Mass of water, Mw	6.82
	Water Content, w%	16.69
	Avg. w%	16.31

	Container #	146
	Mass of cup + wet soil	45
	Mass of cup + dry soil	39.01
	Mass of cup	11.15
	Mass of dry soil, Ms	27.86
	Mass of water, Mw	5.99
Hwy 412 #14,	Water Content, w%	21.50
B-1,	Container #	99
S-1	Mass of cup + wet soil	51.26
	Mass of cup + dry soil	44.43
	Mass of cup	11.06
	Mass of dry soil, Ms	33.37
	Mass of water, Mw	6.83
	Water Content, w%	20.47
	Avg. w%	20.98

	Container #	G-7
	Mass of cup + wet soil	82.53
	Mass of cup + dry soil	70.34
	Mass of cup	20.03
	Mass of dry soil, Ms	50.31
	Mass of water, Mw	12.19
Hwy 412 #14,	Water Content, w%	24.23
в-2,	Container #	145
S-2	Mass of cup + wet soil	51.14
	Mass of cup + dry soil	43.5
	Mass of cup	12.08
	Mass of dry soil, Ms	31.42
	Mass of water, Mw	7.64
	Water Content, w%	24.32
	Avg. w%	24.27

	Container #	224
	Mass of cup + wet soil	51.53
	Mass of cup + dry soil	44.42
	Mass of cup	12.08
	Mass of dry soil, Ms	32.34
	Mass of water, Mw	7.11
Hwy 412 #14,	Water Content, w%	21.99
В-3,	Container #	16
S-1	Mass of cup + wet soil	137.45
	Mass of cup + dry soil	124.91
	Mass of cup	39.91
	Mass of dry soil, Ms	85
	Mass of water, Mw	12.54
	Water Content, w%	14.75
	Avg. w%	18.37
	Container #	22
	Mass of cup + wet soil	49.77
	Mass of cup + dry soil	44.39
	Mass of cup	11
	Mass of dry soil. Ms	33.39
	Mass of water, Mw	5.38
Hwy 412 #15,	Water Content, w%	16.11
B-1,	Container #	134
S-1	Mass of cup + wet soil	48.23
	Mass of cup + dry soil	43.6
	Mass of cup	14.78
	Mass of dry soil. Ms	28.82
	Mass of water, Mw	4.63
	Water Content, w%	16.07
	Avg. w%	16.09
	Container #	84
	Mass of cup + wet soil	51.26
	Mass of cup + dry soil	45.53
	Mass of cup	16.21
	Mass of dry soil, Ms	29.32
	Mass of water, Mw	5.73
Hwy 412 #15,	Water Content, w%	19.54
B-3, S-1	Container #	108
	Mass of cup + wet soil	48.41
	Mass of cup + dry soil	42.6
	Mass of cup	15.34
	Mass of dry soil Ms	27.26
	Mass of water, Mw	5.81

Table D-14 (Continued): Moisture Contents from Bag Samples for Highway 412 (#10-#15)

	Container #	93
	Mass of cup + wet soil	58.08
	Mass of cup + dry soil	52.79
	Mass of cup	15.85
	Mass of dry soil, Ms	36.94
	Mass of water, Mw	5.29
Hwy 412 #14,	Water Content, w%	14.32
в-4,	Container #	63
S-1	Mass of cup + wet soil	52.94
	Mass of cup + dry soil	46.68
	Mass of cup	15.33
	Mass of dry soil, Ms	31.35
	Mass of water, Mw	6.26
	Water Content, w%	19.97
	Avg. w%	17.14
	Container #	214
	Mass of cup + wet soil	60.7
	Mass of cup + dry soil	52.15
	Mass of cup	9.59
	Mass of dry soil, Ms	42.56

	Mass of cup + wet soll	60.7
	Mass of cup + dry soil	52.15
	Mass of cup	9.59
	Mass of dry soil, Ms	42.56
	Mass of water, Mw	8.55
Hwy 412 #15,	Water Content, w%	20.09
в-2,	Container #	#1
S-1	Mass of cup + wet soil	67.53
	Mass of cup + dry soil	57.59
	Mass of cup	12.52
	Mass of dry soil, Ms	45.07
	Mass of water, Mw	9.94
	Water Content, w%	22.05
	Avg w%	21.07

	Container #	84
	Mass of cup + wet soil	51.26
	Mass of cup + dry soil	45.53
	Mass of cup	16.21
	Mass of dry soil, Ms	29.32
	Mass of water, Mw	5.73
Hwy 412 #15,	Water Content, w%	19.54
в-3,	Container #	108
S-1	Mass of cup + wet soil	48.41
	Mass of cup + dry soil	42.6
	Mass of cup	15.34
	Mass of dry soil, Ms	27.26
	Mass of water, Mw	5.81
	Water Content, w%	21.31
	Avg. w%	20.43

APPENDIX E

MOISTURE CONTENTS FROM RESILIENT MODULUS

AND TRIAXIAL SAMPLES

Location	Boring #	Sample #	Depth	MC, %
	2	1	1.5'-2'	12.87
	2	1	2'-2.5'	15.68
	2	1	2.5'-3'	13.65
TT 92 #1	2	2	3'-3.5'	18.21
Hwy 82 - #1	2	2	4'-4.5'	32.56
	5	1	2'-2.5'	21.42
	5	1	2.5'-3'	16.75
	5	1	3.5'-4'	28.96
	2	1	1'-1.5'	16.69
	2	1	1.5'-2'	17.08
	2	1	2.5'-3'	15.44
Hwy 82 - #2	2	2	3'-3.5'	21.57
	2	2	3.5'-4'	22.15
	5	1	1.5'-2'	25.61
	5	1	2'-3.5'	27.01
	3	2	3'-3.5'	14.17
Hwy 167 - #3	3	2	3.5'-4'	16.65
	3	2	4'-5'	17.98
Hwy 7s - #1	1	1	1.5'-2'	14.84
	1	2	2'-2.5'	19.62
Hwy 79 - #1	1	2	3'-3.5'	17.03
	2	1	2.5'-3'	18.69
	1	2	2'-2.5'	29.77
	1	2	3'-3.5'	18.97
	2	2	?	20.98
	3	2	2.5'-3'	29.15
11 70 #2	3	3	4'-5'	16.27
пwy /9 - #2	4	3	4'-4.5'	21.67
	4	3	4.5'-5'	22.88
	4	3	5'-5.5'	22.65
	5	2	2.5'-3'	22.72
	5	2	3'-3.5'	21.92
	2	1	3'	19.75
Hwy 165 - #1	2	1	3'	20.34
	2	1	4'	23.17
	2	1	5'	19.51
	2	1	5'	20.8
	3	1	2'-3'	19.33
h h	3	1	3'-3.5'	19.57
	3	2	4'-4.5'	19.75
	3	2	4.5'-5'	28.08

Table E-1: Summary of Moisture Contents from Resilient Modulus and Triaxial Samples

Location	Boring #	Sample #	Depth	MC, %
	1	2	2'-2.5'	19.15
	1	2	2.5'-3'	20.22
1	2	3'-3.5'	17.29	
	3	4.5'	19.03	
II 40 #1	1	3	5'	16.61
пwy 49 - #1	1	3	5.5'	15.32
	2	3	4'-4.5'	23.95
	2	2	1.5'-2'	20.67
	2	2	2.5'-3'	24.48
	2	3	3.5'-4'	24.61
	1	1	1.5'-2'	21.04
	1	1	2'-2.5'	21.19
	1	1	2.5'-3'	21.87
	1	2	3.5'-4'	20.56
	1	2	4'-4.5'	20.73
	3	2	3.5'-4'	21.58
	3	2	4'-4.5'	22.45
	3	2	4.5'-5'	27.11
Umay 40 #2	3	3	5'-5.5'	27.27
11wy 49 - #2	3	3	6'-6.5'	27.59
	4	2	2.5'-3'	15.9
	4	2	3'-3.5'	21.56
	7	1	1'-1.5'	20.69
	7	1	1.5'-2'	21.8
	7	1	3'	22.33
	8	2	2'-2.5'	13.49
	8	2	2.5'-3'	21.44
	8	2	3'-3.5'	26.78
	1	1	1'-1.5'	16.62
	1	1	2'	19.67
	1	1	3'	16.25
Hway 412 - #1	1	2	3'-3.5'	18.4
Hwy 412 - #1	1	2	3.5'-4'	19.02
	1	2	4'-4.5'	15.49
	4	1	1.5'-2'	15.18
	4	1	3'	14.93
	2	2	2'-2.5'	13.78
	2	2	2.5'-3'	20.13
Hwy 412 - #2	2	2	3'-3.5'	24.85
$11 Wy + 12 - \pi 2$	2	3	4'-4.5'	21.42
	2	3	4.5'-5'	26.35
	2	3	5'-5.5'	26.65

Table E-1 (Continued): Summary of Moisture Contents from Resilient Modulus and Triaxial Samples

Sample:	Hwy 82 #1, B-2, S-1
Depth	1.5'-2
Container #	133
Mass of cup + wet soil	49.94
Mass of cup + dry soil	45.49
Mass of cup	10.91
Mass of dry soil, Ms	34.58
Mass of water, Mw	4.45
Moisture Content	12.87

Hwy 82 #1, B-2, S-1 Sample: Depth 2'-2.5' Container # TAH5 Mass of cup + wet soil 48 Mass of cup + dry soil 43.59 Mass of cup 15.46 Mass of dry soil, Ms 28.13 Mass of water, Mw 4.41 Moisture Content 15.68

Sample:	Hwy 82 #1, B-2, S-1
Depth	2.5'-3'
Container #	#1
Mass of cup + wet soil	74.77
Mass of cup + dry soil	67.6
Mass of cup	15.08
Mass of dry soil, Ms	52.52
Mass of water, Mw	7.17
Moisture Content	13.65

Sample:	Hwy 82 #1, B-2, S-2
Depth	3'-3.5'
Container #	86
Mass of cup + wet soil	73.14
Mass of cup + dry soil	64.22
Mass of cup	15.24
Mass of dry soil, Ms	48.98
Mass of water, Mw	8.92
Moisture Content	18.21

Table E-2: Moisture Contents from Resilient Modulus and Triaxial Samples for Highwy 82

Sample:	Hwy 82 #1, B-2, S-2
Depth	4'-4.5'
Container #	134
Mass of cup + wet soil	50.45
Mass of cup + dry soil	41.66
Mass of cup	14.66
Mass of dry soil, Ms	27
Mass of water, Mw	8.79
Moisture Content	32.56

Sample:	Hwy 82 #1, B-5, S-1
Depth	2'-2.5'
Container #	85
Mass of cup + wet soil	49.11
Mass of cup + dry soil	43.13
Mass of cup	15.21
Mass of dry soil, Ms	27.92
Mass of water, Mw	5.98
Moisture Content	21.42

Sample:	Hwy 82 #1, B-5, S-1
Depth	2.5'-3'
Container #	59
Mass of cup + wet soil	69.02
Mass of cup + dry soil	61.27
Mass of cup	15
Mass of dry soil, Ms	46.27
Mass of water, Mw	7.75
Moisture Content	16.75

Sample:	Hwy 82 #1, B-5, S-1
Depth	3.5'-4'
Container #	57
Mass of cup + wet soil	59.19
Mass of cup + dry soil	49.34
Mass of cup	15.33
Mass of dry soil, Ms	34.01
Mass of water, Mw	9.85
Moisture Content	28.96

Sample:	Hwy 82 #2, B-2, S-1
Depth	1'-1.5'
Container #	54
Mass of cup + wet soil	72.41
Mass of cup + dry soil	64.28
Mass of cup	15.56
Mass of dry soil, Ms	48.72
Mass of water, Mw	8.13
Moisture Content	16.69

Sample:	Hwy 82 #2, B-2, S-1
Depth	1.5'-2'
Container #	63
Mass of cup + wet soil	58
Mass of cup + dry soil	51.82
Mass of cup	15.64
Mass of dry soil, Ms	36.18
Mass of water, Mw	6.18
Moisture Content	17.08

Sample:	Hwy 82 #2, B-2, S-1
Depth	2.5'-3'
Container #	18
Mass of cup + wet soil	63.78
Mass of cup + dry soil	57.34
Mass of cup	15.62
Mass of dry soil, Ms	41.72
Mass of water, Mw	6.44
Moisture Content	15.44

Sample:	Hwy 82 #2, B-2, S-2
Depth	3'-3.5'
Container #	132
Mass of cup + wet soil	63.37
Mass of cup + dry soil	54.85
Mass of cup	15.35
Mass of dry soil, Ms	39.5
Mass of water, Mw	8.52
Moisture Content	21.57

Sample:	Hwy 82 #2, B-2, S-2
Depth	3.5'-4'
Container #	52
Mass of cup + wet soil	81.79
Mass of cup + dry soil	70.2
Mass of cup	17.88
Mass of dry soil, Ms	52.32
Mass of water, Mw	11.59
Moisture Content	22.15

Sample:	Hwy 82 #2, B-5, S-1
Depth	1.5'-2'
Container #	58
Mass of cup + wet soil	72.21
Mass of cup + dry soil	60.61
Mass of cup	15.31
Mass of dry soil, Ms	45.3
Mass of water, Mw	11.6
Moisture Content	25.61

Sample:	Hwy 82 #2, B-5, S-1
Depth	2'-3.5'
Container #	64
Mass of cup + wet soil	57.01
Mass of cup + dry soil	47.2
Mass of cup	10.88
Mass of dry soil, Ms	36.32
Mass of water, Mw	9.81
Moisture Content	27.01

Sample:	Hwy 167 #3, B-3, S-2
Depth	3'-3.5'
Container #	18
Mass of cup + wet soil	34.4
Mass of cup + dry soil	32.07
Mass of cup	15.63
Mass of dry soil, Ms	16.44
Mass of water, Mw	2.33
Moisture Content	14.17

Sample:	Hwy 167 #3, B-3, S-2
Depth	3.5'-4'
Container #	133
Mass of cup + wet soil	32.32
Mass of cup + dry soil	29.27
Mass of cup	10.95
Mass of dry soil, Ms	18.32
Mass of water, Mw	3.05
Moisture Content	16.65

Sample:	Hwy 167 #3, B-3, S-2
Depth	4'-5'
Container #	85
Mass of cup + wet soil	39.8
Mass of cup + dry soil	36.05
Mass of cup	15.19
Mass of dry soil, Ms	20.86
Mass of water, Mw	3.75
Moisture Content	17.98

Table E-4: Moisture Contents from Resilient Modulus and Triaxial Samples for Highwy 7 Spur

Sample:	Hwy 7s #1, B-1, S-1
Depth	1.5'-2'
Container #	64
Mass of cup + wet soil	64.69
Mass of cup + dry soil	58.31
Mass of cup	15.31
Mass of dry soil, Ms	43
Mass of water, Mw	6.38
Moisture Content	14.84

Table E-5: Moisture Contents from Resilient Modulus and Triaxial Samples for Highwy 79

Sample:	Hwy 79 #1, B-1, S-2
Depth	2'-2.5'
Container #	54
Mass of cup + wet soil	52.48
Mass of cup + dry soil	46.41
Mass of cup	15.48
Mass of dry soil, Ms	30.93
Mass of water, Mw	6.07
Moisture Content	19.62

Sample:	Hwy 79 #1, B-1, S-2
Depth	3'-3.5'
Container #	#1
Mass of cup + wet soil	68.24
Mass of cup + dry soil	60.51
Mass of cup	15.13
Mass of dry soil, Ms	45.38
Mass of water, Mw	7.73
Moisture Content	17.03

Sample:	Hwy 79 #1, B-2, S-1
Depth	2.5'-3'
Container #	44
Mass of cup + wet soil	75.72
Mass of cup + dry soil	66.2
Mass of cup	15.26
Mass of dry soil, Ms	50.94
Mass of water, Mw	9.52
Moisture Content	18.69

Sample:	Hwy 79 #2, B-1, S-2
Depth	2'-2.5'
Container #	64
Mass of cup + wet soil	75.98
Mass of cup + dry soil	62.07
Mass of cup	15.35
Mass of dry soil, Ms	46.72
Mass of water, Mw	13.91
Moisture Content	29.77

Sample:	Hwy 79 #2, B-1, S-2
Depth	3'-3.5'
Container #	50
Mass of cup + wet soil	62.8
Mass of cup + dry soil	55.2
Mass of cup	15.14
Mass of dry soil, Ms	40.06
Mass of water, Mw	7.6
Moisture Content	18.97

Sample:	Hwy 79 #2, B-2, S-2
Depth	?
Container #	65
Mass of cup + wet soil	59.4
Mass of cup + dry soil	51.66
Mass of cup	14.77
Mass of dry soil, Ms	36.89
Mass of water, Mw	7.74
Moisture Content	20.98

Sample:	Hwy 79 #2, B-3, S-2
Depth	2.5'-3'
Container #	63
Mass of cup + wet soil	58.72
Mass of cup + dry soil	49.01
Mass of cup	15.7
Mass of dry soil, Ms	33.31
Mass of water, Mw	9.71
Moisture Content	29.15

Sample:	Hwy 79 #2, B-3, S-3
Depth	4'-5'
Container #	101
Mass of cup + wet soil	72.34
Mass of cup + dry soil	64.36
Mass of cup	15.32
Mass of dry soil, Ms	49.04
Mass of water, Mw	7.98
Moisture Content	16.27

Sample:	Hwy 79 #2, B-5, S-2
Depth	2.5'-3'
Container #	72
Mass of cup + wet soil	77.71
Mass of cup + dry soil	65.38
Mass of cup	11.11
Mass of dry soil, Ms	54.27
Mass of water, Mw	12.33
Moisture Content	22.72

Sample:	Hwy 79 #2, B-5, S-2
Depth	3'-3.5'
Container #	133
Mass of cup + wet soil	74.55
Mass of cup + dry soil	63.12
Mass of cup	10.97
Mass of dry soil, Ms	52.15
Mass of water, Mw	11.43
Moisture Content	21.92

Sample:	Hwy 79 #2, B-4, S-3
Depth	4'-4.5'
Container #	101
Mass of cup + wet soil	57.29
Mass of cup + dry soil	49.82
Mass of cup	15.35
Mass of dry soil, Ms	34.47
Mass of water, Mw	7.47
Moisture Content	21.67

Sample:	Hwy 79 #2, B-4, S-3
Depth	4.5'-5'
Container #	86
Mass of cup + wet soil	57.96
Mass of cup + dry soil	50
Mass of cup	15.21
Mass of dry soil, Ms	34.79
Mass of water, Mw	7.96
Moisture Content	22.88

Sample:	Hwy 79 #2, B-4, S-3
Depth	5'-5.5'
Container #	65
Mass of cup + wet soil	65.9
Mass of cup + dry soil	56.46
Mass of cup	14.78
Mass of dry soil, Ms	41.68
Mass of water, Mw	9.44
Moisture Content	22.65

Table E-6: Moisture Contents from Resilient Modulus	and
Triaxial Samples for Highwy165	

Sample:	Hwy 165 #1, B-2, S-1
Depth	3'
Container #	#8
Mass of cup + wet soil	82.13
Mass of cup + dry soil	71.56
Mass of cup	18.03
Mass of dry soil, Ms	53.53
Mass of water, Mw	10.57
Moisture Content	19.75

Sample:	Hwy 165 #1, B-2, S-1
Depth	3'
Container #	54CW
Mass of cup + wet soil	84.83
Mass of cup + dry soil	72.58
Mass of cup	12.36
Mass of dry soil, Ms	60.22
Mass of water, Mw	12.25
Moisture Content	20.34

Sample:	Hwy 165 #1, B-2, S-1
Depth	4'
Container #	54CW
Mass of cup + wet soil	55.11
Mass of cup + dry soil	47.07
Mass of cup	12.37
Mass of dry soil, Ms	34.7
Mass of water, Mw	8.04
Moisture Content	23.17

Sample:	Hwy 165 #1, B-2, S-1
Depth	5'
Container #	6
Mass of cup + wet soil	68.9
Mass of cup + dry soil	60.64
Mass of cup	18.3
Mass of dry soil, Ms	42.34
Mass of water, Mw	8.26
Moisture Content	19.51

Sample:	Hwy 165 #1, B-2, S-1
Depth	5'
Container #	MB
Mass of cup + wet soil	85.72
Mass of cup + dry soil	73.35
Mass of cup	13.87
Mass of dry soil, Ms	59.48
Mass of water, Mw	12.37
Moisture Content	20.80

Sample:	Hwy 165 #1, B-3, S-1
Depth	2'-3'
Container #	Х
Mass of cup + wet soil	77.39
Mass of cup + dry soil	68.11
Mass of cup	20.1
Mass of dry soil, Ms	48.01
Mass of water, Mw	9.28
Moisture Content	19.33

Sample:	Hwy 165 #1, B-3, S-1
Depth	3'-3.5'
Container #	B1
Mass of cup + wet soil	72.48
Mass of cup + dry soil	62.64
Mass of cup	12.37
Mass of dry soil, Ms	50.27
Mass of water, Mw	9.84
Moisture Content	19.57

Sample:	Hwy 165 #1, B-3, S-2
Depth	4'-4.5'
Container #	62
Mass of cup + wet soil	97.15
Mass of cup + dry soil	82.95
Mass of cup	11.04
Mass of dry soil, Ms	71.91
Mass of water, Mw	14.2
Moisture Content	19.75

Sample:	Hwy 165 #1, B-3, S-2
Depth	4.5'-5'
Container #	#8
Mass of cup + wet soil	80.98
Mass of cup + dry soil	67.17
Mass of cup	17.99
Mass of dry soil, Ms	49.18
Mass of water, Mw	13.81
Moisture Content	28.08

Table E-7: Moisture Contents from Resilient Modulus and Triaxial Samples for Highwy 49

Sample:	Hwy 49 #1, B-1, S-2
Depth	2'-2.5'
Container #	RED 24%
Mass of cup + wet soil	71.55
Mass of cup + dry soil	62.07
Mass of cup	12.56
Mass of dry soil, Ms	49.51
Mass of water, Mw	9.48
Moisture Content	19.15

Sample:	Hwy 49 #1, B-1, S-2
Depth	2.5'-3'
Container #	КС
Mass of cup + wet soil	68.1
Mass of cup + dry soil	58.99
Mass of cup	13.94
Mass of dry soil, Ms	45.05
Mass of water, Mw	9.11
Moisture Content	20.22

Sample:	Hwy 49 #1, B-1, S-2
Depth	3'-3.5'
Container #	135
Mass of cup + wet soil	66.56
Mass of cup + dry soil	58.6
Mass of cup	12.56
Mass of dry soil, Ms	46.04
Mass of water, Mw	7.96
Moisture Content	17.29

Sample:	Hwy 49 #1, B-1, S-3
Depth	4.5'
Container #	222
Mass of cup + wet soil	46.59
Mass of cup + dry soil	41.16
Mass of cup	12.62
Mass of dry soil, Ms	28.54
Mass of water, Mw	5.43
Moisture Content	19.03

Sample:	Hwy 49 #1, B-1, S-3
Depth	5'
Container #	80
Mass of cup + wet soil	44.56
Mass of cup + dry soil	39.81
Mass of cup	11.21
Mass of dry soil, Ms	28.6
Mass of water, Mw	4.75
Moisture Content	16.61

Sample:	Hwy 49 #1, B-1, S-3
Depth	5.5'
Container #	5B
Mass of cup + wet soil	74.14
Mass of cup + dry soil	66.15
Mass of cup	13.99
Mass of dry soil, Ms	52.16
Mass of water, Mw	7.99
Moisture Content	15.32

Sample:	Hwy 49 #1, B-2, S-3
Depth	4'-4.5'
Container #	JK
Mass of cup + wet soil	66.47
Mass of cup + dry soil	57.13
Mass of cup	18.14
Mass of dry soil, Ms	38.99
Mass of water, Mw	9.34
Moisture Content	23.95

Sample:	Hwy 49 #1, B-2, S-2
Depth	1.5'-2'
Container #	BB 4L
Mass of cup + wet soil	59.09
Mass of cup + dry soil	52.09
Mass of cup	18.23
Mass of dry soil, Ms	33.86
Mass of water, Mw	7
Moisture Content	20.67

Sample:	Hwy 49 #1, B-2, S-2
Depth	2.5'-3'
Container #	MILL5
Mass of cup + wet soil	61.95
Mass of cup + dry soil	52.23
Mass of cup	12.52
Mass of dry soil, Ms	39.71
Mass of water, Mw	9.72
Moisture Content	24.48

7 49 #1. B-2. S-3
, 19 II X, 2 =, 8 8
3.5'-4'
6
85.06
71.88
18.32
53.56
13.18
24.61

Sample:	Hwy 49 #2, B-1, S-1
Depth	1'-1.5'
Container #	18
Mass of cup + wet soil	75.45
Mass of cup + dry soil	63.58
Mass of cup	10.11
Mass of dry soil, Ms	53.47
Mass of water, Mw	11.87
Moisture Content	22.20

Sample:	Hwy 49 #2, B-1, S-1
Depth	1.5'-2'
Container #	BB6-1
Mass of cup + wet soil	81.85
Mass of cup + dry soil	70.03
Mass of cup	13.85
Mass of dry soil, Ms	56.18
Mass of water, Mw	11.82
Moisture Content	21.04

Sample:	Hwy 49 #2, B-1, S-1
Depth	2'-2.5'
Container #	104A
Mass of cup + wet soil	70.05
Mass of cup + dry soil	60.21
Mass of cup	13.78
Mass of dry soil, Ms	46.43
Mass of water, Mw	9.84
Moisture Content	21.19

Sample:	Hwy 49 #2, B-1, S-1
Depth	2.5'-3'
Container #	3F
Mass of cup + wet soil	64.85
Mass of cup + dry soil	55.42
Mass of cup	12.31
Mass of dry soil, Ms	43.11
Mass of water, Mw	9.43
Moisture Content	21.87

Sample:	Hwy 49 #2, B-1, S-2
Depth	3.5'-4'
Container #	135
Mass of cup + wet soil	64.74
Mass of cup + dry soil	55.84
Mass of cup	12.56
Mass of dry soil, Ms	43.28
Mass of water, Mw	8.9
Moisture Content	20.56

Sample:	Hwy 49 #2, B-1, S-2
Depth	4'-4.5'
Container #	86
Mass of cup + wet soil	63.53
Mass of cup + dry soil	55.24
Mass of cup	15.24
Mass of dry soil, Ms	40
Mass of water, Mw	8.29
Moisture Content	20.73

Sample:	Hwy 49 #2, B-3, S-2
Depth	3.5'-4'
Container #	5A
Mass of cup + wet soil	63.12
Mass of $cup + dry$ soil	54.15
Mass of cup	12.59
Mass of dry soil, Ms	41.56
Mass of water, Mw	8.97
Moisture Content	21.58

Sample:	Hwy 49 #2, B-3, S-2
Depth	4'-4.5'
Container #	Red 24%
Mass of cup + wet soil	85.19
Mass of cup + dry soil	71.86
Mass of cup	12.48
Mass of dry soil, Ms	59.38
Mass of water, Mw	13.33
Moisture Content	22.45

Sample:	Hwy 49 #2, B-3, S-2
Depth	4.5'-5'
Container #	115
Mass of cup + wet soil	58.6
Mass of cup + dry soil	48.51
Mass of cup	11.29
Mass of dry soil, Ms	37.22
Mass of water, Mw	10.09
Moisture Content	27.11

Sample:	Hwy 49 #2, B-3, S-3
Depth	5'-5.5'
Container #	CWL4
Mass of cup + wet soil	82.86
Mass of cup + dry soil	68.69
Mass of cup	16.73
Mass of dry soil, Ms	51.96
Mass of water, Mw	14.17
Moisture Content	27.27

Sample:	Hwy 49 #2, B-3, S-3
Depth	6'-6.5'
Container #	КС
Mass of cup + wet soil	106.29
Mass of cup + dry soil	86.3
Mass of cup	13.85
Mass of dry soil, Ms	72.45
Mass of water, Mw	19.99
Moisture Content	27.59

Sample:	Hwy 49 #2, B-4, S-2
Depth	2.5'-3'
Container #	DSW4
Mass of cup + wet soil	131.55
Mass of cup + dry soil	116.95
Mass of cup	25.1
Mass of dry soil, Ms	91.85
Mass of water, Mw	14.6
Moisture Content	15.90

Sample:	Hwy 49 #2, B-4, S-2
Depth	3'-3.5'
Container #	BB 5-2
Mass of cup + wet soil	76.88
Mass of cup + dry soil	65.75
Mass of cup	14.12
Mass of dry soil, Ms	51.63
Mass of water, Mw	11.13
Moisture Content	21.56

Sample:	Hwy 49 #2, B-7, S-1
Depth	1'-1.5'
Container #	5A
Mass of cup + wet soil	76.54
Mass of cup + dry soil	65.6
Mass of cup	12.72
Mass of dry soil, Ms	52.88
Mass of water, Mw	10.94
Moisture Content	20.69

Sample:	Hwy 49 #2, B-7, S-1
Depth	1.5'-2'
Container #	CWL4
Mass of cup + wet soil	89.56
Mass of cup + dry soil	76.52
Mass of cup	16.71
Mass of dry soil, Ms	59.81
Mass of water, Mw	13.04
Moisture Content	21.80

Sample:	Hwy 49 #2, B-7, S-1
Depth	3'
Container #	104A
Mass of cup + wet soil	86.87
Mass of cup + dry soil	73.53
Mass of cup	13.8
Mass of dry soil, Ms	59.73
Mass of water, Mw	13.34
Moisture Content	22.33

Sample:	Hwy 49 #2, B-8, S-2
Depth	2'-2.5'
Container #	3A
Mass of cup + wet soil	58.67
Mass of cup + dry soil	53.18
Mass of cup	12.47
Mass of dry soil, Ms	40.71
Mass of water, Mw	5.49
Moisture Content	13.49

~ 4	
Sample:	Hwy 49 #2, B-8, S-2
Depth	2.5'-3'
Container #	MILL5
Mass of cup + wet soil	79.29
Mass of cup + dry soil	67.51
Mass of cup	12.56
Mass of dry soil, Ms	54.95
Mass of water, Mw	11.78
Moisture Content	21.44

Sample:	Hwy 49 #2, B-8, S-2
Depth	3'-3.5'
Container #	DSWA
Mass of cup + wet soil	76.62
Mass of cup + dry soil	65.74
Mass of cup	25.11
Mass of dry soil, Ms	40.63
Mass of water, Mw	10.88
Moisture Content	26.78

Table E-8: Moisture Contents from Resilient Modulus andTriaxial Samples for Highwy 412 (#1-#2)

Sample:	Hwy 412 #1, B-1, S-1
Depth	1'-1.5'
Container #	Х
Mass of cup + wet soil	95.52
Mass of cup + dry soil	84.77
Mass of cup	20.09
Mass of dry soil, Ms	64.68
Mass of water, Mw	10.75
Moisture Content	16.62

Sample:	Hwy 412 #1, B-1, S-1
Depth	2'
Container #	BB4-7
Mass of cup + wet soil	77.19
Mass of cup + dry soil	67.5
Mass of cup	18.24
Mass of dry soil, Ms	49.26
Mass of water, Mw	9.69
Moisture Content	19.67

Sample:	Hwy 412 #1, B-1, S-1
Depth	3'
Container #	BB5-2
Mass of cup + wet soil	90.13
Mass of cup + dry soil	79.51
Mass of cup	14.17
Mass of dry soil, Ms	65.34
Mass of water, Mw	10.62
Moisture Content	16.25

Sample:	Hwy 412 #1, B-1, S-2
Depth	3'-3.5'
Container #	A-1
Mass of cup + wet soil	86.79
Mass of cup + dry soil	75.23
Mass of cup	12.4
Mass of dry soil, Ms	62.83
Mass of water, Mw	11.56
Moisture Content	18.40

, B-1, S-2
4'
5
4
7
1
6
7
2

Sample:	Hwy 412 #1, B-1, S-2
Depth	4'-4.5'
Container #	3F
Mass of cup + wet soil	61.55
Mass of cup + dry soil	54.95
Mass of cup	12.33
Mass of dry soil, Ms	42.62
Mass of water, Mw	6.6
Moisture Content	15.49

Sample:	Hwy 412 #1, B-4, S-1
Depth	1.5'-2'
Container #	177A
Mass of cup + wet soil	137.08
Mass of cup + dry soil	122.13
Mass of cup	23.62
Mass of dry soil, Ms	98.51
Mass of water, Mw	14.95
Moisture Content	15.18

Sample:	Hwy 412 #1, B-4, S-1
Depth	3'
Container #	62
Mass of cup + wet soil	58.46
Mass of cup + dry soil	52.3
Mass of cup	11.03
Mass of dry soil, Ms	41.27
Mass of water, Mw	6.16
Moisture Content	14.93

Sample:	Hwy 412 #2, B-2, S-2
Depth	2'-2.5'
Container #	177A
Mass of cup + wet soil	142.71
Mass of cup + dry soil	128.28
Mass of cup	23.6
Mass of dry soil, Ms	104.68
Mass of water, Mw	14.43
Moisture Content	13.78

Sample:	Hwy 412 #2, B-2, S-2
Depth	2.5'-3'
Container #	3A
Mass of cup + wet soil	60.06
Mass of cup + dry soil	52.08
Mass of cup	12.44
Mass of dry soil, Ms	39.64
Mass of water, Mw	7.98
Moisture Content	20.13

Sample:	Hwy 412 #2, B-2, S-2		
Depth	3'-3.5'		
Container #	A1		
Mass of cup + wet soil	53.09		
Mass of cup + dry soil	44.99		
Mass of cup	12.39		
Mass of dry soil, Ms	32.6		
Mass of water, Mw	8.1		
Moisture Content	24.85		
Sample:	Hwy 412 #2, B-2, S-3		
Depth	4'-4.5'		

Sample:	Hwy 412 #2, B-2, S-3		
Depth	4'-4.5'		
Container #	80		
Mass of cup + wet soil	59.38		
Mass of cup + dry soil	50.88		
Mass of cup	11.19		
Mass of dry soil, Ms	39.69		
Mass of water, Mw	8.5		
Moisture Content	21.42		

Sample:	Hwy 412 #2, B-2, S-3		
Depth	4.5'-5'		
Container #	86		
Mass of cup + wet soil	82.85		
Mass of cup + dry soil	68.75		
Mass of cup	15.23		
Mass of dry soil, Ms	53.52		
Mass of water, Mw	14.1		
Moisture Content	26.35		

Sample:	Hwy 412 #2, B-2, S-3		
Depth	5'-5.5'		
Container #	5B		
Mass of cup + wet soil	79.85		
Mass of cup + dry soil	65.99		
Mass of cup	13.99		
Mass of dry soil, Ms	52		
Mass of water, Mw	13.86		
Moisture Content	26.65		

|--|

IRI

(in/mi)

79.20

65.89

71.60

94.41

86.80

67.16

70.33

148.26

77.30

76.03

77.93

83.00

78.57

93.77

79.20

92.51

93.14

88.70

87.44

70.33

88.70

100.74

86.80

93.77

78.57

85.54

102.64

63.99

93.14

88.07

90.60

110.25

102.01

84.27

60.19

130.52

67.80

100.74

107.08

87.44

80.47

133.69

167.27

96.94

90.60

98.21

70.96

84.27

122.92

84.27

77.30

87.44

95.67

82.37

65.26

73.50

89.97

63.99

87.44

139.39

136.22

80.47

132.42

164.10

Rut Depth

(inches)

0.236

0.236

0.236

0.276

0.236

0.236

0.276

0.236

0.236

0.236

0.276

0.276

0.276

0.157

0.236

0.276

0.197

0.236

0.197

0.197

0.197

0.236

0.315

0.157

0.197

0.197

0.276

0.197

0.236

0.276

0.236

0.276

0.236

0.276

0.236

0.276

0.157

0.276

0.236

0.236

0.157

0.354

0.197

0.197

0.236

0.276

0.315

0.276

0.315

0.236

0.315

0.315

0.315

0.236

0.157

0.197

0.197

0.236

0.197

0.157

0.197

0.157

0.157

Starting	Ending	IRI	Rut Depth	Starting	Ending
Log Mile	Log Mile	(in/mi)	(inches)	Log Mile	Log Mile
10.00	10.02	80.07	0.315	11.01	11.03
10.00	10.02	147.00	0.515	11.01	11.05
10.02	10.04	147.00	0.197	11.03	11.04
10.04	10.05	181.84	0.236	11.04	11.00
10.05	10.07	169.80	0.276	11.06	11.08
10.07	10.08	247.74	0.276	11.08	11.09
10.08	10.10	186.91	0.315	11.09	11.11
10.10	10.11	126.72	0.276	11.11	11.12
10.11	10.13	169.17	0.354	11.12	11.14
10.13	10.14	152.06	0.276	11.14	11.15
10.14	10.16	215.42	0.354	11.15	11.17
10.16	10.17	166.64	0.354	11.17	11.18
10.17	10.19	133.06	0 354	11 18	11 20
10.19	10.15	157.77	0.315	11.10	11.20
10.15	10.21	112.15	0.354	11.20	11.22
10.21	10.22	112.15	0.354	11.22	11.25
10.22	10.24	119.75	0.334	11.25	11.25
10.24	10.25	114.05	0.433	11.25	11.20
10.25	10.27	148.26	0.354	11.26	11.28
10.27	10.28	106.44	0.394	11.28	11.29
10.28	10.30	114.05	0.472	11.29	11.31
10.30	10.31	119.12	0.394	11.31	11.32
10.31	10.33	92.51	0.433	11.32	11.34
10.33	10.35	105.18	0.433	11.34	11.36
10.35	10.36	135.59	0.315	11.36	11.37
10.36	10.38	123.55	0.354	11.37	11.39
10.38	10.39	285.12	0.276	11.39	11.40
10.30	10.55	332.01	0.197	11.05	11.10
10.55	10.41	212.01	0.157	11.40	11.42
10.41	10.42	212.03	0.334	11.42	11.45
10.42	10.44	247.74	0.230	11.45	11.45
10.44	10.45	188.81	0.197	11.45	11.40
10.45	10.47	145.09	0.157	11.46	11.48
10.47	10.49	186.28	0.197	11.48	11.50
10.49	10.50	103.91	0.157	11.50	11.51
10.50	10.52	192.61	0.197	11.51	11.53
10.52	10.53	182.48	0.236	11.53	11.54
10.53	10.55	169.17	0.433	11.54	11.56
10.55	10.56	150.80	0.394	11.56	11.57
10.56	10.58	110.88	0.394	11.57	11.59
10.58	10.59	118.48	0.394	11.59	11.60
10.59	10.61	126.72	0 354	11.60	11.62
10.55	10.61	115.05	0.331	11.60	11.64
10.01	10.05	125.45	0.455	11,02	11.07
10.05	10.04	123,43	0.334	11.04	11.05
10.04	10.00	88.07	0.315	11.05	11.0/
10.66	10.67	156.50	0.236	11.67	11.68
10.67	10.69	155.23	0.236	11.68	11.70
10.69	10.70	114.05	0.236	11.70	11,71
10.70	10.72	106.44	0.354	11.71	11.73
10.72	10.73	93.77	0.354	11.73	11.74
10.73	10.75	79.83	0.276	11.74	11.76
10.75	10.77	127.99	0.236	11.76	11.77
10.77	10.78	127.99	0.236	11.77	11.79
10.78	10.80	129.89	0.157	11.79	11.81
10.80	10.81	117.22	0.315	11.81	11.82
10.81	10.83	247.10	0.276	11.82	11.84
10.83	10.84	141 29	0.197	11 84	11.85
10.84	10.86	108.35	0.157	11.85	11.05
10.84	10.00	71.60	0.276	11.05	11.07
10.00	10.07	71.00	0.270	11.07	11.00
10.0/	10.09	/4./0	0.270	11.88	11.90
10.89	10.91	03.89	0.276	11.90	11.91
10.91	10.92	103.28	0.276	11.91	11.93
10.92	10.94	84.90	0.197	11.93	11.95
10.94	10.95	78.57	0.157	11.95	11.96
10.95	10.97	96.94	0.157	11.96	11.98
10.97	10.98	80.47	0.236	11.98	11.99
10.98	11.00	112.15	0.236	11.99	12.01
11.00	11.01	84.27	0.197		-
Table F-2: Highway 82 #1 II	RI and Rut Data fo	r the Full-Depth Lane			
-----------------------------	--------------------	-----------------------			
-----------------------------	--------------------	-----------------------			

Starting	Ending	IRI	Rut Depth	Starting	Ending	IRI	Γ
Log Mile	Log Mile	(in/mi)	(inches)	Log Mile	Log Mile	(in/mi)	
10.00	10.02	70.33	0.433	11.01	11.03	59.56	Γ
10.02	10.04	133.06	0.394	11.03	11.04	95.04	L
10.04	10.05	145.73	0.354	11.04	11.06	62.09	L
10.05	10.07	114.68	0.276	11.06	11.08	86.17	Ļ
10.07	10.08	146.36	0.236	11.08	11.09	88.70	Ļ
10.08	10.10	157.13	0.354	11.09	11.11	68.43	┞
10.10	10.11	129.25	0.315	11.11	11.12	110.25	┞
10.11	10.15	164.10	0.394	11.12	11.14	67.16	┞
10.13	10.14	743 94	0.334	11.14	11.15	59.56	┢
10.14	10.10	199 58	0.197	11.15	11.17	69 70	┢
10.17	10.19	178.04	0.236	11.18	11.20	70.96	t
10.19	10.21	202.12	0.157	11.20	11.22	84.90	t
10.21	10.22	154.60	0.197	11.22	11.23	70.96	t
10.22	10.24	150.80	0.197	11.23	11.25	59.56	ſ
10.24	10.25	147.00	0.236	11.25	11.26	56.39	Γ
10.25	10.27	198.95	0.157	11.26	11.28	86.17	Γ
10.27	10.28	126.09	0.394	11.28	11.29	70.96	L
10.28	10.30	110.88	0.433	11.29	11.31	65.26	Ĺ
10.30	10.31	123.55	0.394	11.31	11.32	68.43	L
10.31	10.33	84.90	0.276	11.32	11.34	75.40	Ļ
10.33	10.35	140.66	0.315	11.34	11.36	83.64	Ļ
10.35	10.36	161.21	0.19/	11.30	11.37	68.43 77.02	┞
10.30	10.38	102.84	0.230	11.37	11.39	//.93	┝
10.30	10.39	346.58	0.197	11.39	11.40	74.76	┞
10.35	10.41	210.99	0.197	11.40	11.42	90.60	┢
10.42	10.44	250.27	0.197	11.43	11.45	70.33	ł
10.44	10.45	167.27	0.236	11.45	11.46	76.67	t
10.45	10.47	159.03	0.157	11.46	11.48	70.33	t
10.47	10.49	185.64	0.276	11.48	11.50	117.22	L
10.49	10.50	138.76	0.276	11.50	11.51	90.60	L
10.50	10.52	148.90	0.276	11.51	11.53	67.80	L
10.52	10.53	195.78	0.433	11.53	11.54	67.16	Ļ
10.53	10.55	149.53	0.315	11.54	11.56	82.37	┞
10.55	10.56	152.70	0.315	11.50	11.57	84.90	┞
10.50	10.58	03 14	0.334	11.57	11.59	87.11	┞
10.58	10.59	121.65	0.315	11.59	11.60	85.54	┢
10.61	10.63	121.03	0.236	11.62	11.64	77.30	ł
10.63	10.64	148.26	0.157	11.64	11.65	69.70	t
10.64	10.66	102.64	0.354	11.65	11.67	98.84	ſ
10.66	10.67	161.57	0.236	11.67	11.68	160.30	ſ
10.67	10.69	145.09	0.197	11.68	11.70	79.83	Ĺ
10.69	10.70	134.96	0.315	11.70	11.71	106.44	L
10.70	10.72	106.44	0.315	11.71	11.73	78.57	L
10.72	10.73	110.88	0.276	11.73	11.74	79.20	L
10.73	10.75	106.44	0.276	11.74	11.76	72.23	┞
10.75	10.77	117.85	0.236	11.76	11.77	80.80	┞
10.//	10.78	132.70	0.230	11.7/	11./9	90.31	┞
10.78	10.00	100.44	0.157	11./9	11.01	70 33	┞
10.81	10.81	339.61	0.315	11.87	11.82	75.40	┞
10.83	10.84	177.41	0.551	11.84	11.85	113.41	t
10.84	10.86	143.19	0.157	11.85	11.87	93.77	t
10.86	10.87	93.14	0.236	11.87	11.88	91.24	t
10.87	10.89	62.73	0.197	11.88	11.90	124.19	t
10.89	10.91	62.73	0.118	11.90	11.91	71.60	t
10.91	10.92	113.41	0.157	11.91	11.93	69.06	ſ
10.92	10.94	76.67	0.236	11.93	11.95	103.28	ſ
10.94	10.95	67.16	0.118	11.95	11.96	91.87	ſ
10.95	10.97	114.68	0.157	11.96	11.98	96.31	ſ
10.97	10.98	78.57	0.157	11.98	11.99	94.41	Ĺ
10.98	11.00	89.34	0.236	11.99	12.01	93.14	L
11.00	11 01	80.47	1 0119				

Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)
11.01	11.03	59.56	0.118
11.03	11.04	95.04	0.157
11.04	11.06	62.09	0.157
11.06	11.08	86.17	0.197
11.08	11.09	88.70	0.157
11.09	11.11	68.43	0.118
11.11	11.12	72.86	0.118
11.12	11.14	110.25	0.157
11.14	11.15	67.16	0.118
11.15	11.17	59.56	0.157
11.17	11.18	69.70	0.118
11.18	11.20	/0.96	0.118
11.20	11.22	84.90	0.118
11.22	11.23	70.90	0.118
11.25	11.25	56.20	0.157
11.25	11.20	20.39 96.17	0.197
11.20	11.20	70.06	0.197
11.20	11.29	65 74	0.230
11.29	11.31	68 /2	0.137
11.31	11.32	75 40	0.230
11.32	11.34	83.64	0.110
11.34	11.30	68.43	0.157
11 37	11.37	77 02	0.118
11.37	11.39	65.80	0.113
11.59	11.40	74.76	0.137
11.40	11.42	90.60	0.118
11.42	11.45	70.33	0.118
11.45	11.46	76.67	0.118
11.46	11.48	70.33	0.118
11.48	11.50	117.22	0.157
11.50	11.51	90.60	0.118
11.51	11.53	67.80	0.157
11.53	11.54	67.16	0.118
11.54	11.56	82.37	0.118
11.56	11.57	84.90	0.118
11.57	11.59	84.90	0.157
11.59	11.60	87.44	0.118
11.60	11.62	85.54	0.157
11.62	11.64	77.30	0.118
11.64	11.65	69.70	0.118
11.65	11.67	98.84	0.236
11.67	11.68	160.30	0.197
11.68	11.70	79.83	0.118
11.70	11.71	106.44	0.276
11.71	11.73	78.57	0.197
11.73	11.74	79.20	0.197
11.74	11.76	72.23	0.157
11.76	11.77	86.80	0.157
11.77	11.79	96.31	0.157
11.79	11.81	83.64	0.118
11.81	11.82	70.33	0.118
11.82	11.84	75.40	0.276
11.84	11.85	113.41	0.157
11.85	11.87	93.77	0.157
11.8/	11.88	91.24	0.19/
11.88	11.90	124.19	0.118
11.90	11.91	/1.00	0.118
11.91	11.93	102.00	0.107
11.93	11.95	01.07	0.19/
11.93	11.90	91.8/	0.304
11.90	11.90	0/ /1	0.19/
11.90	12.55	03.1/	0.079
11,77	12,01	75.17	0.177

Table F-3: Highway 82 #2 IRI and Rut Data for the Stone Base Land	nes
---	-----

Starting	Ending	IRI	Rut Depth	Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)	Log Mile	Log Mile	(in/mi)	(inches)
7.30	7.32	162.20	0.236	8.31	8.33	112.15	0.197
7.32	7.33	159.67	0.276	8.33	8.34	72.86	0.157
7.33	7.35	144.46	0.157	8.34	8.36	110.88	0.276
7.35	7.36	112.15	0.315	8.36	8.37	94.41	0.354
7.36	7.38	88.07	0.276	8.37	8.39	70.33	0.236
7.38	7.39	93.14	0.354	8.39	8.40	71.60	0.276
7.39	7.41	121.02	0.315	8.40	8.42	121.02	0.276
7.41	7.42	290.82	0.197	8.42	8.43	77.93	0.197
7.42	7.44	186.28	0.276	8.43	8.45	96.31	0.354
7.44	7.46	204.02	0.236	8.45	8.47	77.93	0.315
7.46	7.47	152.70	0.236	8.47	8.48	76.03	0.394
7.47	7.49	84.90	0.276	8.48	8.50	89.34	0.315
7.49	7.50	112.78	0.236	8.50	8.51	105.18	0.276
7.50	7.52	121.02	0.197	8.51	8.53	87.44	0.315
7.52	7.53	78.57	0.197	8.53	8.54	148.26	0.276
7.53	7.55	85.54	0.354	8.54	8.56	66.53	0.276
7.55	7.56	82.37	0.315	8.56	8.57	110.25	0.157
7.56	7.58	105.81	0.276	8.57	8.59	84.27	0.315
7.58	7.60	102.64	0.236	8.59	8.61	107.08	0.276
7.60	7.61	95.04	0.315	8.61	8.62	118.48	0.276
7.61	7.63	78.57	0.197	8.62	8.64	124.19	0.315
7.63	7.64	97.57	0.236	8.64	8.65	106.44	0.433
7.64	7.66	79.83	0.276	8.65	8.67	114.68	0.276
7.66	7.67	66.53	0.236	8.67	8.68	105.18	0.354
7.67	7.69	97.57	0.276	8.68	8.70	83.64	0.276
7.69	7.70	110.88	0.276	8.70	8.71	105.81	0.315
7.70	7.72	119.75	0.197	8.71	8.73	77.30	0.276
7.72	7.74	100.74	0.197	8.73	8.75	114.05	0.315
7.74	7.75	89.34	0.315	8.75	8.76	122.28	0.236
7.75	7.77	108.98	0.157	8.76	8.78	175.51	0.394
7.77	7.78	84.90	0.276	8.78	8.79	130.52	0.315
7.78	7.80	92.51	0.197	8.79	8.81	98.21	0.236
7.80	7.81	86.17	0.276	8.81	8.82	120.38	0.354
7.81	7.83	72.86	0.236	8.82	8.84	117.22	0.236
7.83	7.84	88.70	0.236	8.84	8.85	120.38	0.236
7.84	7.86	104.54	0.197	8.85	8.87	139.39	0.276
7.86	7.88	170.44	0.236	8.87	8.88	234.43	0.315
7.88	7.89	71.60	0.236	8.88	8.90	162.20	0.197
7.89	7.91	91.87	0.197	8.90	8.92	104.54	0.276
7.91	7.92	82.37	0.236	8.92	8.93	143.83	0.276
7.92	7.94	103.28	0.197	8.93	8.95	176.77	0.236
7.94	7.95	77.93	0.236	8.95	8.96	145.73	0.276
7.95	7.97	102.01	0.197	8.96	8.98	181.21	0.354
7.97	7.98	99.48	0.197	8.98	8.99	124.82	0.394
7.98	8.00	113.41	0.197	8.99	9.01	247.74	0.197
8.00	8.02	70.96	0.157	9.01	9.02	203.39	0.157
8.02	8.03	81.73	0.236	9.02	9.04	169.80	0.118
8.03	8.05	80.47	0.157	9.04	9.06	143.83	0.236
8.05	8.06	141.29	0.236	9.06	9.07	129.89	0.276
8.06	8.08	69.06	0.197	9.07	9.09	115.32	0.236
8.08	8.09	119.12	0.197	9.09	9.10	160.30	0.197
8.09	8.11	81.10	0.276	9.10	9.12	102.64	0.276
8.11	8.12	99.48	0.236	9.12	9.13	119.75	0.315
8.12	8.14	74.13	0.157	9.13	9.15	105.81	0.433
8.14	8.15	105.18	0.197	9.15	9.16	126.09	0.394
8.15	8.17	83.64	0.118	9.16	9.18	128.62	0.512
8.17	8.19	106.44	0.236	9.18	9.20	160.93	0.512
8.19	8.20	94.41	0.118	9.20	9.21	166.00	0.394
8.20	8.22	89.34	0.236	9.21	9.23	145.73	0.472
8.22	8.23	84.90	0.236	9.23	9.24	179.94	0.315
8.23	8.25	107.08	0.197	9.24	9.26	142.56	0.197
8.25	8.26	146.36	0.276	9.26	9.27	110.25	0.118
8.26	8.28	165.37	0.315	9.27	9.29	184.38	0.157
8.28	8.29	93.77	0.197	9.29	9.30	199.58	0.157
8.29	8.31	214.16	0.197				

Table F-4: High	way 82 #2 IRI and	d Rut Data for the	Full-Depth Lanes

Starting	Ending	IRI	Rut Depth	1	Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)		Log Mile	Log Mile	(in/mi)	(inches)
7.30	7.32	132.42	0.197		8.31	8.33	218.59	0.236
7.32	7.33	114.68	0.394		8.33	8.34	147.00	0.157
7.33	7.35	185.01	0.433		8.34	8.36	145.09	0.551
7.35	7.36	140.03	0.433		8.36	8.37	148.90	0.394
7.36	7.38	172.97	0.433		8.37	8.39	161.57	0.354
7.38	7.39	117.22	0.236		8.39	8.40	138.12	0.236
7.39	7.41	197.05	0.157		8.40	8.42	191.35	0.157
7.41	7.42	146.36	0.197		8.42	8.43	124.82	0.276
7.42	7 44	126.09	0.197		8 4 3	845	95.04	0.236
7.44	7.46	146.36	0.197		8.45	8.47	121.65	0.276
7 46	7 47	119.75	0.236		847	8 4 8	107.71	0.236
7.10	7.49	101 38	0.197		8.48	8 50	137.49	0.236
7.17	7.19	93 14	0.118		8 50	8.50	91.87	0.157
7.50	7.50	92.51	0.116		8.50	8.51	127.00	0.137
7.50	7.52	131 70	0.276		8.51	8.55	214 70	0.230
7.52	7.55	121.02	0.270		8.55	8.54	1/1 20	0.313
7.55	7.55	127.00	0.197		8.56	8.50	120.52	0.455
7.55	7.50	91 10	0.137		8.50	8.57	107.08	0.394
7.50	7.58	162.20	0.230		8.57	8.59	107.08	0.313
7.50	7.00	102.20	0.313		8.39	8.63	152.00	0.334
7.00	7.01	133.09	0.334		8.01	8.02	105.47	0.334
7.01	7.03	131./9	0.197		8.02	8.04	120.72	0.276
7.03	7.04	162.20	0.197		8.04	8.05	122,92	0.315
7.64	7.66	86.80	0.354		8.65	8.67	122,92	0.315
7.66	7.67	124.19	0.433		8.67	8.68	108.98	0.276
7.67	7.69	135.59	0.276		8.68	8.70	161.57	0.236
7.69	7.70	143.19	0.236		8.70	8.71	210.36	0.197
7.70	7.72	124.82	0.197		8.71	8.73	151.43	0.669
7.72	7.74	145.73	0.276		8.73	8.75	186.28	0.827
7.74	7.75	188.18	0.236		8.75	8.76	223.03	0.906
7.75	7.77	174.24	0.236		8.76	8.78	219.86	0.118
7.77	7.78	141.29	0.157		8.78	8.79	138.76	0.157
7.78	7.80	150.16	0.276		8.79	8.81	96.31	0.236
7.80	7.81	119.12	0.315		8.81	8.82	138.12	0.236
7.81	7.83	115.95	0.236		8.82	8.84	127.99	0.236
7.83	7.84	115.32	0.276		8.84	8.85	144.46	0.157
7.84	7.86	136.86	0.394		8.85	8.87	139.39	0.276
7.86	7.88	139.39	0.354		8.87	8.88	224.29	0.276
7.88	7.89	101.38	0.315		8.88	8.90	181.84	0.197
7.89	7.91	102.01	0.315		8.90	8.92	106.44	0.157
7.91	7.92	216.06	0.551		8.92	8.93	148.90	0.276
7.92	7.94	226.83	0.512		8.93	8.95	164.74	0.118
7.94	7.95	141.29	0.315		8.95	8.96	119.75	0.315
7.95	7.97	127.35	0.315		8.96	8.98	195.15	0.472
7.97	7.98	117.85	0.315		8.98	8.99	112.15	0.236
7.98	8.00	156.50	0.315		8.99	9.01	237.60	0.197
8.00	8.02	122.92	0.394		9.01	9.02	188.81	0.276
8.02	8.03	118.48	0.315		9.02	9.04	123.55	0.236
8.03	8.05	131.79	0.394		9.04	9.06	139.39	0.276
8.05	8.06	98.84	0.197		9.06	9.07	129.89	0.236
8.06	8.08	96.94	0.236		9.07	9.09	120.38	0.197
8.08	8.09	89.34	0.354		9.09	9.10	143.83	0.315
8.09	8.11	108.98	0.315		9.10	9.12	122.92	0.197
8.11	8.12	112.15	0.276		9.12	9.13	109.61	0.276
8.12	8.14	152.06	0.315		9.13	9.15	128.62	0.315
8.14	8.15	132.42	0.394		9.15	9.16	131.16	0.394
8.15	8.17	89.97	0.315		9.16	9.18	153.96	0.197
8.17	8.19	124.82	0.315		9.18	9.20	200.22	0.354
8.19	8.20	124.19	0.276		9.20	9.21	185.64	0.276
8.20	8.22	121.02	0.315		9.21	9.23	133.06	0.433
8.22	8.23	176.14	0.236		9.23	9.24	160.30	0.433
8.23	8.25	138.76	0.354		9.24	9.26	136.86	0.315
8.25	8.26	143.19	0.276		9.26	9.27	118.48	0.354
8.26	8.28	139.39	0.394		9.27	9.29	122.28	0.315
8.28	8.29	84.90	0.354		9.29	9.30	152.70	0.236
8.29	8.31	142.56	0.236					

Starting	Ending	TRI	Rut Depth	Starting	Ending	TRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)	Log Mile	Log Mile	(in/mi)	(inches)
4 60	4 61	121.65	0.118	5.61	5.62	74.13	0.197
4.60	4.63	100 58	0.110	5.67	5.62	60.83	0.157
4.63	4.63	218 50	0.137	5.62	5.65	56 30	0.137
4.03	4.04	124 10	0.236	5.65	5.05	70.39	0.250
4.04	4.00	124.19	0.230	3.63	3.67	79.20	0.137
4.66	4.67	93.77	0.157	5.67	5.68	53.86	0.118
4.67	4.69	50.69	0.118	5.68	5.70	74.76	0.197
4.69	4.71	72.86	0.197	5.70	5.71	59.56	0.157
4.71	4.72	93.14	0.118	5.71	5.73	67.80	0.197
4.72	4.74	60.19	0.118	5.73	5.75	72.23	0.118
4.74	4.75	66.53	0.236	5.75	5.76	94.41	0.157
4.75	4.77	53.22	0.157	5.76	5.78	95.67	0.197
4.77	4.78	86.80	0.118	5.78	5.79	70.33	0.197
4.78	4.80	63.99	0.079	5.79	5.81	75.40	0.197
4.80	4.81	73.50	0.118	5.81	5.82	63.36	0.197
4.81	4.83	90.60	0.118	5.82	5.84	72.23	0.197
4 83	4 84	81 73	0.118	5.84	5.85	62.09	0.197
4.05	4.04	70.92	0.110	5.04	5.05	72.50	0.127
4.04	4.00	01.87	0.137	5.05	5.07	91 72	0.230
4.80	4.00	91.67	0.197	5.87	5.09	01.75	0.197
4.88	4.89	83.00	0.197	5.89	5.90	77.30	0.197
4.89	4.91	60.19	0.157	5.90	5.92	77.93	0.19/
4.91	4.92	83.00	0.197	5.92	5.93	112.78	0.157
4.92	4.94	70.33	0.236	5.93	5.95	103.91	0.236
4.94	4.95	77.93	0.118	5.95	5.96	98.21	0.236
4.95	4.97	66.53	0.276	5.96	5.98	136.86	0.236
4.97	4.98	82.37	0.236	5.98	5.99	86.17	0.118
4.98	5.00	98.84	0.157	5.99	6.01	78.57	0.236
5.00	5.02	72.86	0.118	6.01	6.03	72.86	0.276
5.02	5.03	70.33	0.157	6.03	6.04	65.89	0.236
5.03	5.05	63.99	0.118	6.04	6.06	65.26	0.197
5.05	5.06	65.89	0.118	6.06	6.07	70.96	0.157
5.06	5.08	107.08	0.197	6.07	6.09	74 13	0.118
5.00	5.00	135.50	0.197	6.09	6.05	03.14	0.107
5.00	5.09	135.55	0.197	6.10	6.10	74.76	0.137
5.09	5.11	136.70	0.197	6.10	0.12	74.70	0.230
5.11	5.12	101.25	0.313	6.12	0.15	/3.40	0.230
5.12	5.14	191.35	0.197	6.13	6.15	69.70	0.197
5.14	5.16	129.25	0.157	6.15	6.17	96.31	0.236
5.16	5.17	133.69	0.236	6.17	6.18	63.36	0.276
5.17	5.19	96.31	0.157	6.18	6.20	81.73	0.315
5.19	5.20	76.03	0.315	6.20	6.21	89.34	0.276
5.20	5.22	66.53	0.315	6.21	6.23	71.60	0.276
5.22	5.23	77.93	0.315	6.23	6.24	60.83	0.157
5.23	5.25	105.81	0.315	6.24	6.26	69.06	0.118
5.25	5.26	85.54	0.315	6.26	6.27	67.80	0.197
5.26	5.28	94.41	0.315	6.27	6.29	69.06	0.197
5.28	5.30	94.41	0.315	6.29	6.31	69.70	0.118
5.30	5.31	98.21	0.236	6.31	6.32	69.06	0.197
5 31	5 3 3	134.96	0.276	6.32	634	70.96	0.197
5.33	5 34	112 78	0.354	634	635	75.40	0.157
5 34	5.34	112.78	0.354	6.25	6.33	75.40	0.157
5.34	5.30	102.29	0.334	6.35	6.37	91 72	0.107
5.30	5.37	105.28	0.270	0.37	0.38	01.75	0.197
5.37	5.39	120.38	0.276	0.38	6.40	83.04	0.197
5.39	5.40	149.53	0.236	6.40	6.41	89.97	0.197
5.40	5.42	142.56	0.354	6.41	6.43	75.40	0.236
5.42	5.44	79.20	0.394	6.43	6.44	101.38	0.157
5.44	5.45	72.86	0.354	6.44	6.46	78.57	0.157
5.45	5.47	97.57	0.236	6.46	6.48	75.40	0.236
5.47	5.48	101.38	0.315	6.48	6.49	81.10	0.236
5.48	5.50	95.04	0.276	6.49	6.51	85.54	0.157
5.50	5.51	108.35	0.118	6.51	6.52	115.32	0.157
5.51	5.53	87.44	0.197	6.52	6.54	142.56	0.197
5.53	5.54	72.86	0.236	6.54	6.55	62.09	0.157
5 54	5 56	112 15	0.197	6.55	6.57	65.26	0.079
5 56	5 57	86.80	0.118	6.57	6.58	67.80	0157
5.50	5.50	07.50	0.110	6.59	6.60	70.92	0.137
5.57	5.59	110.25	0.197	6.20	6.00	111 51	0.230
5.59	5.01	110,23	0.19/	0.00	0.02	111,31	0.230

Table F-5: Highway 79 #1 and #2 IRI and Rut Data for the Stone Base Lanes

Table F-6: Highway 49 #1 1	IRI and Rut Data for	the Full-Depth Lanes

Starting	Ending	IRI	Rut Depth	Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)	Log Mile	Log Mile	(in/mi)	(inches)
22.51	22.52	112	0.276	23.50	23.52	219	0.276
22.52	22.54	99	0.197	23.52	23.53	132	0.315
22.54	22.56	101	0.197	23.53	23.55	130	0.236
22.56	22.57	87	0.197	23.55	23.57	160	0.276
22.57	22.59	216	0.276	23.57	23.58	125	0.354
22.59	22.60	162	0.276	23.58	23.60	196	0.315
22.60	22.60	82	0.236	23.60	23.61	100	0.010
22.00	22.02	113	0.200	23.61	23.63	156	0.004
22.02	22.00	70	0.315	23.01	23.05	130	0.250
22.00	22.03	75	0.313	23.03	23.04	109	0.334
22.00	22.00	102	0.270	23.04	23.00	120	0.472
22.00	22.08	103	0.276	23.00	23.07	130	0.433
22.68	22.70	73	0.315	23.67	23.69	150	0.394
22.70	22.71	/4	0.315	23.69	23.71	1/6	0.315
22.71	22.73	129	0.315	23.71	23.72	103	0.354
22.73	22.74	132	0.354	23.72	23.74	125	0.315
22.74	22.76	139	0.197	23.74	23.75	168	0.236
22.76	22.77	112	0.236	23.75	23.77	184	0.394
22.77	22.79	150	0.315	23.77	23.78	164	0.315
22.79	22.80	146	0.472	23.78	23.80	163	0.236
22.80	22.82	137	0.276	23.80	23.81	171	0.866
22.82	22.84	127	0.197	23.81	23.83	139	0.354
22.84	22.85	132	0.197	23.83	23.85	99	0.315
22.85	22.87	127	0.276	23.85	23.86	143	0.315
22.87	22.88	134	0.315	23.86	23.88	97	0.433
22.88	22.90	112	0.236	23.88	23.89	228	0.236
22.90	22.91	143	0.315	23.89	23.91	207	0.315
22.91	22.93	177	0.276	23.91	23.92	156	0.315
22.01	22.00	104	0.270	23.02	23.02	240	0.010
22.00	22.04	75	0.304	22.02	22.04	279	0.270
22.94	22.90	107	0.315	23.94	23.95	270	0.270
22.90	22.90	127	0.315	23.95	23.97	222	0.270
22.90	22.99	93	0.315	23.97	23.90	203	0.157
22.99	23.01	137	0.315	23.98	24.00	192	0.315
23.01	23.02	143	0.276	0.00	0.02	293	0.157
23.02	23.04	85	0.236	0.02	0.03	240	0.157
23.04	23.05	110	0.236	0.03	0.05	258	0.236
23.05	23.07	137	0.315	0.05	0.06	252	0.157
23.07	23.08	78	0.315	0.06	0.08	235	0.118
23.08	23.10	77	0.276	0.08	0.09	181	0.157
23.10	23.11	87	0.276	0.09	0.11	304	0.157
23.11	23.13	87	0.315	0.11	0.12	354	0.118
23.13	23.15	77	0.315	0.12	0.14	174	0.118
23.15	23.16	75	0.157	0.14	0.16	205	0.118
23.16	23.18	73	0.197	0.16	0.17	95	0.118
23.18	23.19	87	0.236	0.17	0.19	150	0.118
23.19	23.21	136	0.315	0.19	0.20	181	0.197
23.21	23.22	145	0.236	0.20	0.22	324	0.079
23.22	23.24	137	0.197	0.22	0.23	136	0.079
23.24	23.25	82	0.315	0.23	0.25	136	0.157
23.25	23.27	67	0.394	0.25	0.26	163	0.118
23.27	23.29	168	0.354	0.26	0.28	139	0.118
23.29	23.30	113	0.236	0.28	0.30	156	0.079
23.30	23.32	127	0 197	0.30	0.31	148	0.079
23.32	23.33	148	0.236	0.31	0.33	135	0.079
23.32	23 35	172	0.236	0.01	0.00	126	0.070
20.00	23.36	131	0.200	0.00	0.36	112	0.157
20.00	20.00	200	0.334	0.34	0.30	00	0.157
20.00	20.00	12/	0.210	0.00	0.07	03	0.137
20.00	20.08	104	0.313	0.37	0.38	400	0.110
23.39	23.41	108	0.394	0.39	0.40	120	0.118
23.41	23.43	203	0.315	0.40	0.42	301	0.118
23.43	∠3.44	251	0.512	0.42	0.43	162	0.276
23.44	23.46	192	0.433	0.43	0.45	169	0.079
23.46	23.47	195	0.315	0.45	0.47	207	0.157
23.47	23.49	189	0.276	0.47	0.48	219	0.118
23.49	23.50	174	0.236	0.48	0.50	199	0.197
				0.50	0.51	183	0.118

Table F-7: Highway	7 49 #2 IR	I and Rut	Data for the	Full-Depth	Lanes

				a			
Starting	Ending	IRI	Rut Depth	Starting	Ending		Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)	Log Mile	Log Mile	(in/mi)	(inches)
19.20	19.22	457	0.157	20.21	20.23	306	0.354
19.22	19.23	214	0.197	20.23	20.24	177	0.197
19.23	19.25	184	0.315	20.24	20.26	149	0.354
19.25	19.26	267	0.197	20.26	20.27	119	0.315
19.26	19.28	123	0.315	20.27	20.29	156	0.354
19.28	19.29	203	0.354	20.29	20.30	87	0.354
19.29	19.31	219	0.315	20.30	20.32	91	0.433
19.31	19.32	143	0.276	20.32	20.33	107	0.394
19.32	19.34	127	0.276	20.33	20.35	231	0.551
19.34	19.36	215	0.315	20.35	20.37	390	0.236
19.36	19.37	216	0.276	20.37	20.38	278	0.315
19.37	19.39	478	0.276	20.38	20.40	179	0.433
19.39	19.40	169	0.197	20.40	20.41	110	0.354
19.40	19.42	117	0.276	20.41	20.43	112	0.236
19.42	19.43	115	0.315	20.43	20.44	112	0.354
19.43	19.45	106	0.276	20.44	20.46	150	0.276
19.45	19.46	112	0.315	20.46	20.47	134	0 197
19.46	19.48	65	0.236	20.47	20.49	144	0.276
19.48	19.50	82	0.315	20.49	20.51	98	0.354
10.40	10.50	<u> 02</u>	0.0107	20.51	20.51	141	0.004
10.50	19.51	137	0.157	20.51	20.52	84	0.210
10.51	10.55	100	0.304	20.52	20.04	111	0.010
10.00	10.54	77	0.394	20.04	20.00	05	0.472
10.04	10.57	70	0.304	20.00	20.07	120	0.384
19.00	19.57	70	0.276	20.57	20.00	130	0.304
19.57	19.59	60	0.276	20.56	20.00	0/	0.313
19.59	19.60	60	0.276	20.60	20.01	115	0.354
19.60	19.62	60	0.394	20.61	20.63	120	0.354
19.62	19.64	66	0.315	20.63	20.65	101	0.236
19.64	19.65	101	0.276	20.65	20.66	89	0.315
19.65	19.67	94	0.197	20.66	20.68	108	0.315
19.67	19.68	105	0.276	20.68	20.69	91	0.394
19.68	19.70	154	0.512	20.69	20.71	125	0.236
19.70	19.71	130	0.354	20.71	20.72	91	0.315
19.71	19.73	131	0.197	20.72	20.74	113	0.394
19.73	19.74	101	0.315	20.74	20.75	114	0.433
19.74	19.76	165	0.276	20.75	20.77	151	0.236
19.76	19.78	144	0.433	20.77	20.78	147	0.354
19.78	19.79	156	0.315	20.78	20.80	103	0.315
19.79	19.81	187	0.354	20.80	20.82	96	0.236
19.81	19.82	115	0.354	20.82	20.83	73	0.315
19.82	19.84	182	0.354	20.83	20.85	120	0.315
19.84	19.85	116	0.354	20.85	20.86	131	0.354
19.85	19.87	136	0.315	20.86	20.88	110	0.394
19.87	19.88	117	0.197	20.88	20.89	123	0.315
19.88	19.90	178	0.276	20.89	20.91	154	0.276
19.90	19.91	105	0.236	20.91	20.92	86	0.236
19.91	19.93	119	0.315	20.92	20.94	79	0.315
19.93	19.95	169	0.315	20.94	20.96	200	0.197
19.95	19.96	193	0.315	20.96	20.97	106	0.276
19.96	19.98	108	0.315	20.97	20.99	86	0.276
19.98	19.99	106	0.276	20.99	21.00	105	0.354
19.99	20.01	196	0.354	21.00	21.02	110	0.236
20.01	20.02	127	0.354	21.02	21.03	72	0.394
20.02	20.04	80	0.315	21.03	21.05	129	0.315
20.04	20.05	102	0.236	21.05	21.06	106	0.315
20.05	20.07	104	0.197	21.06	21.08	75	0.236
20.07	20.09	101	0.315	21.08	21.10	72	0.354
20.09	20.10	89	0.276	21.10	21.11	90	0.197
20.10	20.12	110	0.236	21.11	21.13	189	0.315
20.12	20.13	106	0.236	21.13	21.14	174	0.315
20.13	20.15	98	0.276	21.14	21.16	155	0.315
20.15	20.16	79	0.197	21.16	21.17	121	0.394
20.16	20.18	120	0.354	21.17	21.19	275	0.315
20.18	20.19	162	0.276	21.19	21.20	215	0.276
20.19	20.21	240	0.394	21.20	21.22	191	0.197
	-			-			

Table F-8: Highway 270 #1	IRI and Rut Data	a for the Stone Bas	e Lanes

				_				
Starting	Ending	IRI	Rut Depth		Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)		Log Mile	Log Mile	(in/mi)	(inches)
7.01	7.02	447.96	0.197		8.02	8.03	159.03	0.236
7.02	7.04	577.84	0.157		8.03	8.05	304.76	0.118
7.04	7.05	411.21	0.276		8.05	8.06	370.66	0.118
7.05	7.07	390.93	0.236		8.06	8.08	218.59	0.197
7.07	7.08	288.29	0.197		8.08	8.09	249.64	0.276
7.08	7.10	186.28	0.236		8.09	8.11	250.27	0.236
7.10	7.11	238.23	0.236	1	8.11	8.12	157.13	0.276
7.11	7.13	319.97	0.197	1	8.12	8.14	205.29	0.394
7.13	7.15	191.35	0.236	1	8.14	8.16	205.29	0.197
7.15	7.16	217.32	0.236	1	8.16	8.17	218.59	0.197
7.16	7.18	268.01	0.236	1	8.17	8.19	240.77	0.197
7.18	7.19	513.85	0.197	1	8.19	8.20	221.13	0.197
7.19	7.21	172.97	0.276	1	8.20	8.22	109.61	0.236
7.21	7.22	273.08	0.197	1	8.22	8.23	162.20	0.197
7.22	7.24	198.95	0.276	1	8.23	8.25	233.80	0.157
7.24	7.25	171.07	0.315	1	8.25	8.26	171.71	0.157
7.25	7.27	167.90	0.197	1	8.26	8.28	188.81	0.236
7.27	7.29	152.06	0.276	1	8.28	8.30	191.35	0.197
7.29	7.30	116.58	0.236	1	8.30	8.31	166.64	0.236
7.30	7.32	149.53	0.394	1	8.31	8.33	144.46	0.236
7.32	7.33	297.79	0.157	1	8.33	8.34	95.67	0.197
7.33	7.35	306.03	0.591	1	8.34	8.36	105.18	0.197
7.35	7.36	351.01	0.197	1	8.36	8.37	96.94	0.197
7.36	7.38	265.48	0.157	1	8.37	8.39	110.88	0.197
7.38	7.39	291.46	0.197	1	8.39	8.40	119.75	0.157
7.39	7.41	187.55	0.315	1	8.40	8.42	95.04	0.157
7.41	7.43	235.07	0.118	1	8.42	8.44	103.91	0.276
7.43	7.44	195.78	0.118	1	8.44	8.45	135.59	0.236
7.44	7.46	205.92	0.157	1	8.45	8.47	84.90	0.157
7.46	7.47	147.63	0.197	1	8.47	8.48	99.48	0.157
7.47	7.49	202.12	0.276	1	8.48	8.50	98.21	0.276
7.49	7.50	195.78	0.197	1	8.50	8.51	99.48	0.157
7.50	7.52	497.38	0.276	1	8.51	8.53	78.57	0.276
7.52	7.53	319.33	0.157	1	8.53	8.54	92.51	0.197
7.53	7.55	155.23	0.276	1	8.54	8.56	92.51	0.276
7.55	7.57	251.54	0.276	1	8.56	8.57	78.57	0.197
7.57	7.58	296.52	0.276	1	8.57	8.59	114.68	0.236
7.58	7.60	295.89	0.236	1	8.59	8.61	110.88	0.236
7.60	7.61	208.45	0.315	1	8.61	8.62	80.47	0.118
7.61	7.63	271.18	0.236	1	8.62	8.64	108.35	0.236
7.63	7.64	181.21	0.394	1	8.64	8.65	89.97	0.197
7.64	7.66	215.42	0.276	1	8.65	8.67	79.83	0.157
7.66	7.67	364.95	0.276	1	8.67	8.68	89.34	0.236
7.67	7.69	415.01	0.315	1	8.68	8.70	81.73	0.197
7.69	7.71	460.63	0.276	1	8.70	8.71	96.31	0.315
7.71	7.72	249.00	0.197	1	8.71	8.73	91.87	0.197
7.72	7.74	457.46	0.512		8.73	8.75	107.71	0.236
7.74	7.75	534.12	0.236		8.75	8.76	108.35	0.157
7.75	7.77	182.48	0.276		8.76	8.78	81.10	0.236
7.77	7.78	148.26	0.236		8.78	8.79	74.13	0.236
7.78	7.80	215.42	0.118		8.79	8.81	86.80	0.236
7.80	7.81	139.39	0.157		8.81	8.82	120.38	0.236
7.81	7.83	105.18	0.315		8.82	8.84	117.85	0.157
7.83	7.84	140.66	0.236		8.84	8.85	121.65	0.118
7.84	7.86	178.68	0.276		8.85	8.87	90.60	0.157
7.86	7.88	480.27	0.276		8.87	8.89	111.51	0.236
7.88	7.89	212.89	0.236		8.89	8.90	98.21	0.197
7.89	7.91	300.96	0.236		8.90	8.92	104.54	0.236
7.91	7.92	175.51	0.315		8.92	8.93	153.96	0.236
7.92	7.94	119.12	0.354		8.93	8.95	116.58	0.197
7.94	7.95	148.26	0.197		8.95	8.96	112.15	0.079
7.95	7.97	246.47	0.236		8.96	8.98	74.13	0.236
7.97	7.98	143.19	0.197		8.98	8.99	93.77	0.197
7.98	8.00	110.25	0.276	1	8.99	9.01	103.91	0.197
8.00	8.02	71.60	0.197		9.01	9.03	177.41	0.354

Table F-9: Highway 270 #2 IRI and Rut Data	for the Stone Base La	nes

				_				
Starting	Ending	IRI	Rut Depth		Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)		Log Mile	Log Mile	(in/mi)	(inches)
5.50	5.51	164.10	0.276		6.51	6.52	156.50	0.236
5.51	5.53	190.08	0.236		6.52	6.54	172.34	0.197
5.53	5.55	236.97	0.276		6.54	6.56	168.54	0.157
5.55	5.56	188.81	0.236		6.56	6.57	142.56	0.276
5.56	5.58	165.37	0.197	1	6.57	6.59	116.58	0.157
5.58	5.59	188.18	0.197	1	6.59	6.60	122.92	0.197
5.59	5.61	241.40	0.236	1	6.60	6.62	119.12	0.197
5.61	5.62	225.56	0.197	1	6.62	6.63	143.19	0.197
5.62	5.64	264.21	0.236	1	6.63	6.65	102.01	0.197
5.64	5.65	247.10	0.236	1	6.65	6.66	157.13	0.197
5.65	5.67	238.87	0.197	1	6.66	6.68	130.52	0.157
5.67	5.69	225.56	0.197	1	6.68	6.70	245.20	0.157
5.69	5.70	219.23	0.394	1	6.70	6.71	160.93	0.197
5.70	5.72	249.00	0.197	1	6.71	6.73	194.52	0.236
5.72	5.73	344.68	0.157	1	6.73	6.74	157.77	0.197
5.73	5.75	593.05	0.276	1	6.74	6.76	110.25	0.157
5.75	5.76	239.50	0.236	1	6.76	6.77	166.00	0.197
5.76	5.78	241.40	0.276	1	6.77	6.79	164.74	0.276
5.78	5.79	215.42	0.197	1	6.79	6.80	207.82	0.197
5.79	5.81	202.12	0.197	1	6.80	6.82	187.55	0.276
5.81	5.83	305.40	0.118	1	6.82	6.84	300.96	0.197
5.83	5.84	176.77	0.197	1	6.84	6.85	180.58	0.197
5.84	5.86	223.66	0.276	1	6.85	6.87	209.72	0.197
5.86	5.87	181.84	0.236	1	6.87	6.88	185.01	0.157
5.87	5.89	144.46	0.197	1	6.88	6.90	220.49	0.197
5.89	5.90	160.93	0.197	1	6.90	6.91	237.60	0.118
5.90	5.92	186.28	0.197	1	6.91	6.93	168.54	0.276
5.92	5.93	149.53	0.157	1	6.93	6.94	136.86	0.236
5.93	5.95	128.62	0.276	1	6.94	6.96	202.12	0.197
5.95	5.97	145.09	0.197	1	6.96	6.97	188.18	0.276
5.97	5.98	262.31	0.157	1	6.97	6.99	229.36	0.276
5.98	6.00	175.51	0.197	1	6.99	7.01	185.01	0.236
6.00	6.01	170.44	0.157	1	7.01	7.02	195.78	0.236
6.01	6.03	178.68	0.197	1	7.02	7.04	191.35	0.236
6.03	6.04	212.89	0.236	1	7.04	7.05	292.72	0.394
6.04	6.06	220.49	0.315	1	7.05	7.07	325.04	0.236
6.06	6.07	309.83	0.197]	7.07	7.08	326.30	0.236
6.07	6.09	247.10	0.276		7.08	7.10	176.77	0.315
6.09	6.10	199.58	0.276		7.10	7.11	230.00	0.197
6.10	6.12	317.43	0.276		7.11	7.13	151.43	0.315
6.12	6.14	221.13	0.315		7.13	7.15	193.25	0.236
6.14	6.15	288.92	0.236		7.15	7.16	145.09	0.236
6.15	6.17	261.04	0.236		7.16	7.18	121.02	0.236
6.17	6.18	229.36	0.197		7.18	7.19	108.35	0.236
6.18	6.20	140.03	0.276		7.19	7.21	113.41	0.276
6.20	6.21	122.92	0.276		7.21	7.22	122.92	0.315
6.21	6.23	131.16	0.236		7.22	7.24	143.19	0.354
6.23	6.24	115.32	0.197		7.24	7.25	105.81	0.236
6.24	6.26	149.53	0.197		7.25	7.27	139.39	0.197
6.26	6.28	255.97	0.157		7.27	7.29	119.12	0.197
6.28	6.29	388.40	0.157		7.29	7.30	127.99	0.276
6.29	6.31	286.39	0.197		7.30	7.32	171.71	0.197
6.31	6.32	190.08	0.157		7.32	7.33	169.80	0.197
6.32	6.34	193.25	0.118		7.33	7.35	237.60	0.236
6.34	6.35	207.19	0.236		7.35	7.36	250.91	0.197
6.35	6.37	129.89	0.157		7.36	7.38	235.07	0.315
6.37	6.38	210.36	0.236		7.38	7.39	159.03	0.236
6.38	6.40	159.03	0.197	1	7.39	7.41	142.56	0.197
6.40	6.42	150.16	0.197	1	7.41	7.43	197.05	0.276
6.42	6.43	160.93	0.236	ł	7.43	7.44	178.68	0.197
6.43	6.45	236.33	0.197	ł	7.44	7.46	235.70	0.197
6.45	0.46	300.33	0.591	ł	/.46	7.47	1/9.31	0.276
0.40	6.48	238.23	0.107	ł	7.4/	7.49	144.40	0.270
6.40	0.49	200.11	0.19/	ł	7.69	7.50	139.03	0.230
0.49	0.31	207.02	0.230	I .	7.30	1.32	3/1.92	0.313

Table F-10: Highwa	y 270 #2 IRI and Rut Data	for the Full-Depth Lanes

							
Starting	Ending	IRI	Rut Depth	Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)	Log Mile	Log Mile	(in/mi)	(inches)
5.50	5.51	236.33	0.118	6.51	6.52	179.31	0.118
5.51	5.53	195.78	0.236	6.52	6.54	188.81	0.236
5.53	5.55	261.04	0.197	6.54	6.56	197.68	0.157
5.55	5.56	245.20	0.315	6.56	6.57	172.34	0.236
5.56	5.58	191.98	0.197	6.57	6.59	162.20	0.157
5.58	5.59	171.07	0.157	6.59	6.60	198.95	0.118
5.59	5.61	232.53	0.433	6.60	6.62	397.27	0.157
5.61	5.62	284.49	0.276	6.62	6.63	159.67	0.157
5.62	5.64	227.46	0.236	6.63	6.65	253.44	0.197
5.64	5.65	219.86	0.197	6.65	6.66	133.06	0.157
5.65	5.67	286.39	0.236	6.66	6.68	226.20	0.236
5.67	5.69	232.53	0.197	6.68	6.70	276.88	0.157
5.69	5 70	304.13	0.157	6 70	671	223.66	0.197
5 70	5 72	230.63	0.157	6.71	6.73	230.63	0.197
5.70	5.72	206.55	0.157	6.73	6.74	160.30	0.157
5.72	5.75	188.81	0.157	6.73	6.76	124 10	0.137
5.75	5.75	216.60	0.197	6.74	6.70	202.86	0.113
5.75	5.70	107.68	0.137	6.77	6.70	205.02	0.157
5.70	5.70	247.10	0.230	6.77	6.79	195.01	0.137
5.78	5./9	247.10	0.118	6.79	0.80	100.01	0.230
5./9	5.81	163.47	0.157	6.80	6.82	138.12	0.197
5.81	5.83	145.75	0.118	6.82	6.84	106.44	0.157
5.83	5.84	223.66	0.157	6.84	6.85	186.91	0.19/
5.84	5.86	308.56	0.118	6.85	6.87	262.31	0.157
5.86	5.87	203.39	0.197	6.87	6.88	227.46	0.197
5.87	5.89	243.94	0.197	6.88	6.90	181.21	0.315
5.89	5.90	268.01	0.236	6.90	6.91	227.46	0.276
5.90	5.92	205.29	0.197	6.91	6.93	194.52	0.118
5.92	5.93	238.87	0.118	6.93	6.94	195.78	0.236
5.93	5.95	218.59	0.157	6.94	6.96	186.91	0.197
5.95	5.97	275.62	0.197	6.96	6.97	138.76	0.236
5.97	5.98	266.11	0.118	6.97	6.99	271.81	0.197
5.98	6.00	233.80	0.118	6.99	7.01	253.44	0.236
6.00	6.01	176.77	0.276	7.01	7.02	447.96	0.197
6.01	6.03	330.11	0.354	7.02	7.04	577.84	0.157
6.03	6.04	437.18	0.197	7.04	7.05	411.21	0.276
6.04	6.06	332.64	0.236	7.05	7.07	390.93	0.236
6.06	6.07	299.06	0.276	7.07	7.08	288.29	0.197
6.07	6.09	205.29	0.197	7.08	7.10	186.28	0.236
6.09	6.10	166.64	0.197	7.10	7.11	238.23	0.236
6.10	6.12	271.81	0.276	7.11	7.13	319.97	0.197
6.12	6.14	209.72	0.236	7.13	7.15	191.35	0.236
6.14	6.15	243.94	0.197	7.15	7.16	217.32	0.236
6.15	6.17	269.91	0.197	7.16	7.18	268.01	0.236
6.17	6.18	219.23	0.157	7.18	7.19	513.85	0.197
6.18	6.20	169.17	0.236	7.19	7.21	172.97	0.276
6.20	6.21	135.59	0.276	7.21	7.22	273.08	0.197
6.21	6.23	127.99	0.315	7.22	7.24	198.95	0.276
6.23	6.24	141.29	0.276	7.24	7.25	171.07	0.315
6.24	6.26	206.55	0.276	7.25	7.27	167.90	0.197
6.26	6.28	374.46	0.236	7.27	7.29	152.06	0.276
6.28	6.29	407.40	0.197	7.29	7.20	116.58	0.236
6.20	631	208.43	0.137	7.25	7.30	149.53	0.250
6 3 1	6.37	270.53	0.236	7.30	7.32	207 70	0.157
6.22	6.34	420.59	0.230	7.32	7.55	297.79	0.157
6.34	6.34	429.30	0.137	7.33	7.35	251.01	0.391
0.34	0.33	224.29	0.197	7.33	7.30	331.01	0.197
6.33	0.37	159.38	0.230	7.30	7.30	203.48	0.137
0.57	0.58	159.07	0.118	7.38	7.59	291.40	0.19/
0.38	0.40	305.40	0.236	/.39	/.41	18/.55	0.315
6.40	6.42	345.95	0.236	7.41	7.43	235.07	0.118
6.42	6.43	191.35	0.236	7.43	7.44	195.78	0.118
6.43	6.45	252.17	0.236	7.44	7.46	205.92	0.157
6.45	6.46	285.75	0.276	7.46	7.47	147.63	0.197
6.46	6.48	520.19	0.197	7.47	7.49	202.12	0.276
6.48	6.49	245.84	0.118	7.49	7.50	195.78	0.197
6.49	6.51	197.68	0.157	7.50	7.52	497.38	0.276

Table F-11: Highway 65 #1 IRI and Rut Data for the Stone Base Lanes

Starting	Ending	IRI	Rut Depth	Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)	Log Mile	Log Mile	(in/mi)	(inches)
16.78	16.80	60.19	0.197	17.79	17.81	79.20	0.157
16.80	16.81	46.89	0.197	17.81	17.82	89.97	0.157
16.81	16.83	62.09	0.157	17.82	17.84	88.07	0.118
16.83	16.85	62.09	0.197	17.84	17.86	121.65	0.157
16.85	16.86	103.28	0.157	17.86	17.87	179.94	0.157
16.86	16.88	72.23	0.197	17.87	17.89	249.64	0.118
16.88	16.89	58.92	0.118	17.89	17.90	121.02	0.236
16.89	16.91	77.93	0.118	17.90	17.92	132.42	0.157
16.91	16.92	58.92	0.157	17.92	17.93	147.63	0.157
16.92	16.94	74.13	0.157	17.93	17.95	100.74	0.157
16.94	16.95	81.73	0.157	17.95	17.96	91.87	0.157
16.95	16.97	80.47	0.276	17.96	17.98	74.76	0.157
16.97	16.99	91.87	0.118	17.98	17.99	81.73	0.157
16.99	17.00	105.81	0.118	17.99	18.01	57.66	0.118
17.00	17.02	62.73	0.118	18.01	18.03	72.86	0.118
17.02	17.03	66.53	0.157	18.03	18.04	71.60	0.157
17.03	17.05	67.80	0.157	18.04	18.06	86.80	0.118
17.05	17.06	53.86	0.118	18.06	18.07	71.60	0.236
17.06	17.08	84.90	0.197	18.07	18.09	100.11	0.118
17.08	17.09	84 27	0.276	18.09	18.10	90.60	0.118
17.00	17.05	95.04	0.157	18.10	18.12	63.99	0.118
17.05	17.11	54 49	0.157	18.10	18.12	129.25	0.118
17.11	17.12	83.64	0.157	18.12	18.15	129.25	0.110
17.12	17.14	70 33	0.157	18.15	18.15	300.33	0.157
17.14	17.10	70.33	0.157	18.15	18.17	153.06	0.197
17.10	17.17	66.53	0.157	18.17	18.10	207.10	0.157
17.17	17.19	65.26	0.137	18.10	18.20	207.19	0.270
17.19	17.20	03.20	0.197	18.20	10.21	94.41	0.137
17.20	17.22	93.// 71.60	0.197	10.21	10.23	07.44 70.22	0.157
17.22	17.25	120.29	0.230	10.23	10.24	70.33	0.137
17.25	17.25	52.96	0.270	10.24	18.20	01.73	0.110
17.23	17.20	92.60	0.197	18.20	10.27	99.40 70.92	0.197
17.20	17.20	63.04	0.197	10.27	10.29	19.65	0.137
17.28	17.30	100.74	0.197	18.29	18.31	37.00	0.118
17.30	17.31	00.19	0.197	18.31	18.32	88.70	0.157
17.31	17.33	79.20	0.270	18.32	18.34	80.17	0.118
17.33	17.34	53.80	0.197	18.34	18.35	/6.03	0.118
17.34	17.36	63.99	0.118	18.35	18.37	97.57	0.197
17.30	17.37	/6.03	0.197	18.37	18.38	/9.20	0.157
17.37	17.39	52.59	0.157	18.38	18.40	81./3	0.236
17.39	17.40	/3.50	0.157	18.40	18.41	65.89	0.315
17.40	17.42	84.90	0.197	18.41	18.43	57.02	0.157
17.42	17.44	/0.0/	0.197	18.43	18.45	/0.96	0.157
17.44	17.45	55.76 (0.70	0.236	18.45	18.40	05.20	0.236
17.45	17.47	69.70	0.157	18.46	18.48	81./3	0.197
17.49	17.50	/4./0	0.157	18.48	18.49	00.33	0.13/
17.50	17.50	85.00	0.15/	18.49	18.51	/0.03	0.157
17.50	17.51	02.75	0.118	18.51	18.52	/0.0/	0.19/
17.51	17.55	δ1./5 67.16	0.157	18.52	18.54	12.23	0.19/
17.55	17.54	07.10	0.19/	18.54	18.33	00.55	0.157
17.54	17.50	83.00	0.157	18.55	18.57	92.51	0.157
17.56	17.58	86.17	0.157	18.57	18.59	105.81	0.157
17.58	17.59	66.53	0.118	18.59	18.60	81.10	0.157
17.59	17.61	62.09	0.118	18.60	18.62	129.89	0.197
17.61	17.62	65.89	0.197	18.62	18.63	68.43	0.118
17.62	17.64	55.12	0.157	18.63	18.65	82.37	0.157
17.64	17.65	79.83	0.157	18.65	18.66	69.70	0.315
17.65	17.67	87.44	0.157	18.66	18.68	137.49	0.079
17.67	17.68	86.80	0.157	18.68	18.69	74.76	0.157
17.68	17.70	62.09	0.118	18.69	18.71	87.44	0.118
17.70	17.72	53.22	0.157	18.71	18.73	90.60	0.276
17.72	17.73	72.23	0.157	18.73	18.74	56.39	0.118
17.73	17.75	84.90	0.157	18.74	18.76	58.29	0.118
17.75	17.76	105.18	0.157	18.76	18.77	85.54	0.197
17.76	17.78	65.89	0.276	18.77	18.79	74.13	0.157
17.78	17.79	89.34	0.197	18.79	18.80	56.39	0.236

Starting	Ending	IRI	Rut Depth		Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)		Log Mile	Log Mile	(in/mi)	(inches)
10.69	10.71	95.67	0.157		11.75	11.77	114.68	0.354
10.71	10.72	136.22	0.157		11.77	11.78	105.18	0.591
10.72	10.74	129.89	0.157	-	11.78	11.80	95.04	0.472
10.74	10.76	116.58	0.157		11.80	11.81	114.68	0.433
10.76	10.77	106.44	0.118		11.81	11.83	111.51	0.315
10.77	10.79	117.85	0.230	-	11.83	11.84	121.02	0.315
10.79	10.80	110.25	0.230		11.04	11.00	100.93	0.334
10.80	10.82	87.44	0.079		11.00	11.07	217 32	0.787
10.82	10.85	114.68	0.116		11.87	11.09	217.52	0.512
10.85	10.85	99.48	0.157		11.05	11.91	117.85	0.276
10.85	10.88	82.37	0.197		11.92	11.92	155.87	0.827
10.88	10.00	144.46	0.197		11.94	11.95	181.84	0.394
10.90	10.91	97.57	0.118		11.95	11.97	124.19	0.472
10.91	10.93	147.00	0.236		11.97	11.98	137.49	0.433
10.93	10.94	153.33	0.118		11.98	12.00	101.38	0.472
10.94	10.96	121.02	0.197		12.00	12.01	183.11	0.236
10.96	10.97	121.65	0.197		12.01	12.03	117.22	0.276
10.97	10.99	150.80	0.157		12.03	12.05	88.07	0.315
10.99	11.00	131.79	0.472		12.05	12.06	173.61	0.276
11.00	11.02	141.93	0.236		12.06	12.08	109.61	0.197
11.02	11.04	152.06	0.157		12.08	12.09	147.00	0.315
11.04	11.05	124.82	0.236		12.09	12.11	146.36	0.118
11.05	11.07	156.50	0.197		12.11	12.12	152.70	0.433
11.07	11.08	139.39	0.315		12.12	12.14	163.47	0.433
11.08	11.10	140.03	0.118	-	12.14	12.15	232.53	0.157
11.10	11.11	117.85	0.551		12.15	12.17	138.76	0.236
11.11	11.13	145.73	0.197	-	12.17	12.19	127.99	0.354
11.13	11.14	148.90	0.230	-	12.19	12.20	220.49	0.197
11.14	11.10	153.90	0.230	-	12.20	12.22	1/2 92	0.197
11.10	11.10	103.00	0.334		12.22	12.25	133.06	0.197
11.10	11.19	86.80	0.315		12.25	12.25	120.38	0.334
11.21	11.22	127.35	0.315		12.26	12.28	88.07	0.472
11.22	11.24	137.49	0.315		12.28	12.29	91.24	0.551
11.24	11.25	170.44	0.354		12.29	12.31	131.79	0.354
11.25	11.27	139.39	0.276		12.31	12.32	98.21	0.787
11.27	11.28	114.05	0.315		12.32	12.34	99.48	0.276
11.28	11.30	133.06	0.197		12.34	12.36	98.84	0.197
11.30	11.32	114. 68	0.394		12.36	12.37	95.04	0.236
11.32	11.33	140.66	0.276		12.37	12.39	109.61	0.236
11.33	11.35	163.47	0.276		12.39	12.40	98.21	0.394
11.35	11.36	147.63	0.236		12.40	12.42	93.77	0.394
11.36	11.38	91,24	0.276		12.42	12.43	86.17	0.276
11.38	11.39	101.38	0.157	-	12.43	12.45	117.22	0.197
11.39	11.41	107.08	0.236		12.45	12.46	105.81	0.197
11.41	11.42	118.48	0.512	-	12.40	12.48	80.17	0.276
11.42	11.44	133 60	0.270		12.48	12.50	74.41 102.01	0.197
11.44	11.45	134.32	0.250		12.50	12.51	160.93	0.197
11.47	11 49	189.45	0.197		12.53	12.55	95.67	0.276
11.49	11.50	129.25	0.276		12.54	12.56	83.64	0.197
11.50	11.50	232.53	0.354		12.56	12.50	92.51	0.276
11.52	11.53	113.41	0.433		12.57	12.59	94.41	0.118
11.53	11.55	114.05	0.157		12.59	12.60	89.97	0.236
11.55	11.56	128.62	0.276		12.60	12.62	116.58	0.197
11.56	11.58	176.77	0.354		12.62	12.64	95.67	0.315
11.58	11.59	193.25	0.551		12.64	12.65	74.13	0.118
11.59	11.61	147.63	0.669		12.65	12.67	122.28	0.157
11.61	11.63	112.15	0.157	[12.67	12.68	109.61	0.236
11.63	11.64	127.35	0.354	[12.68	12.70	110.25	0.236
11.64	11.66	148.90	0.591		12.70	1 2 .71	84.90	0.276
11.66	11.67	186.91	0.394		12.71	12.73	106.44	0.315
11.67	11.69	223.03	0.433		12.73	12.74	105.18	0.236
11.69	11.70	134.96	0.748		12.74	12.76	126.72	0.197
11.70	11.72	132.42	0.472		12.76	12.78	84.90	0.197
11,72	11.73	140.66	0.433		12.78	12,79	99.48	0.394
11.73	11.75	94,41	0.433	ιL	12,79	12,81	89.97	0.157

Starting	Ending	IRI	Rut Depth	Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)	Log Mile	Log Mile	(in/mi)	(inches)
10.69	10.71	100.74	0.314	11.77	11.78	136.22	0.275
10.71	10.72	82.37	0.393	11.78	11.80	166.00	0.236
10.72	10.74	103.28	0.353	11.80	11.81	261.04	0.353
10.74	10.76	127.35	0.314	11.81	11.83	223.66	0.353
10.76	10.77	164.74	0.157	11.83	11.84	222.39	0.510
10.77	10.79	141.93	0.157	11.84	11.86	371.92	0.353
10.79	10.80	112.15	0.118	11.86	11.87	319.33	0.510
10.80	10.82	115.95	0.275	11.87	11.89	295.89	0.471
10.82	10.83	107.71	0.236	11.89	11.91	380.79	0.157
10.83	10.85	115.32	0.314	11.91	11.92	179.31	0.275
10.85	10.86	91.24	0.157	11.92	11.94	169.80	0.196
10.86	10.88	93.77	0.353	11.94	11.95	232.53	0.314
10.88	10.90	101.01	0.275	11.95	11.97	1/0.00	0.303
10.90	10.91	04.41	0.314	11.97	12.00	211 62	0.275
10.91	10.93	1/2.92	0.230	12.00	12.00	101.02	0.275
10.93	10.94	185.01	0.275	12.00	12.01	162.84	0.303
10.94	10.30	185.01	0.130	12.01	12.00	102.04	0.353
10.97	10.99	233 80	0.157	12.00	12.06	347 21	0.275
10.99	11.00	275.62	0.196	12.06	12.08	143.83	0.314
11.00	11.02	150.80	0.236	12.08	12.09	153.96	0.236
11.02	11.04	202.12	0.275	12.09	12.11	167.90	0.353
11.04	11.05	385.86	0.432	12.11	12.12	141.29	0.353
11.08	11.10	214.16	0.196	12.12	12.14	133.06	0.510
11.10	11.11	481.54	0.353	12.14	12.15	248.37	0.236
11.11	11.13	201.48	0.196	12.15	12.17	129.25	0.118
11.13	11.14	181.21	0.236	12.17	12.19	178.68	0.236
11.14	11.16	202.75	0.432	12.19	12.20	161.57	0.393
11.16	11.18	137.49	0.393	12.20	12.22	105.81	0.432
11.18	11.19	132.42	0.275	12.22	12.23	188.81	0.196
11.19	11.21	153.33	0.667	12.23	12.25	138.76	0.196
11.21	11.22	132.42	0.157	12.25	12.26	116.58	0.353
11.22	11.24	167.27	0.314	12.26	12.28	95.04	0.275
11.24	11.25	165.37	0.982	12.28	12.29	95.04	0.314
11.25	11.27	133.06	0.353	12.29	12.31	91.24	0.275
11.27	11.28	132.42	0.275	12.31	12.32	112.15	0.314
11.28	11.30	186.28	0.275	12.32	12.34	142.55	0.236
11.30	11.32	145.09	0.236	12.34	12.36	110.25	0.275
11.32	11.33	129.20	0.314	12.30	12.37	107.09	0.314
11.33	11.30	167.07	0.393	12.37	12.39	08.21	0.190
11.30	11.30	107.27	0.471	12.39	12.40	106.44	0.303
11.30	11.30	186.28	0.432	12.40	12.42	98.21	0.275
11.39	11 41	250 27	0.353	12 43	12.45	107 71	0.157
11 41	11 42	174 24	0.196	12.45	12.46	116 58	0.353
11.42	11.44	140.03	0.236	12.46	12,48	82.37	0.275
11.44	11.45	171.71	0.393	12.48	12.50	154.60	0.353
11.45	11.47	224.29	0.275	12.50	12.51	219.23	0.236
11.47	11.49	228.73	0.275	12.51	12.53	137.49	0.275
11.49	11.50	142.56	0.275	12.53	12.54	129.25	0.275
11.50	11.52	235.70	0.314	12.54	12.56	115.32	0.667
11.52	11.53	311.10	0.275	12.56	12.57	114.05	0.353
11.53	11.55	211.62	0.353	12.57	12.59	103.28	0.275
11.55	11.56	228.73	0.196	12.59	12.60	84.27	0.236
11.56	11.58	416.28	0.275	12.60	12.62	124.19	0.393
11.58	11.59	362.42	0.196	12.62	12.64	130.52	0.353
11.59	11.61	327.57	0.157	12.64	12.65	141.93	0.236
11.61	11.63	140.66	0.393	12.65	12.67	117.22	0.432
11.63	11.64	134.32	0.432	12.67	12.68	162.84	0.393
11.64	11.66	446.69	0.393	12.68	12.70	130.52	0.236
11.66	11.67	208.01	0.275	12.70	12./1	127.35	0.196
11.0/	11.09	329.47	0.4/1	12./1	12.73	104.65	0.314
11.09	11.70	291.19	0.000	12.73	12.74	121.00	0.353
11.70	11.72	266 11	0.471	12.74	12.70	139.32	0.4/1
11.72	11.75	172 24	0.903	12.70	12.70	107 71	0.303
11.75	11.70	1/2.04	0.000	12.70	12.79	120.00	0.2/0
11.70	1 11.77	143.03	0.230	12.19	12.01	123.03	0.010

Table F-14: Highway 65 #11 IRI and Rut Data for the Stone Base Lanes

Starting	Ending	IRI	Rut Depth		Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)		Log Mile	Log Mile	(in/mi)	(inches)
12.74	12.76	126.72	0.197	1	13.75	13.77	91.87	0.276
12.76	12.78	84.90	0.197	1	13.77	13.79	95.04	0.236
12.78	12.79	99.48	0.394	1	13.79	13.80	112.78	0.157
12.79	12.81	89.97	0.157		13.80	13.82	133.69	0.197
12.75	12.01	00.48	0.236		13.80	13.83	103.28	0.157
12.01	12.02	01 74	0.230		13.82	13.85	1/3 83	0.157
12.82	12.04	91.24	0.197		13.65	13.85	145.65	0.313
12.64	12.65	93.04	0.334		13.65	13.60	105.16	0.313
12.85	12.87	121.65	0.276		13.86	13.88	125.45	0.157
12.87	12.88	134.96	0.433		13.88	13.89	111.51	0.197
12.88	12.90	108.98	0.551		13.89	13.91	122.92	0.157
12.90	12.92	102.01	0.197		13.91	13.92	124.19	0.276
12.92	12.93	102.01	0.197		13.92	13.94	105.18	0.197
12.93	12.95	105.81	0.197		13.94	13.96	167.90	0.236
12.95	12.96	84.90	0.276		13.96	13.97	260.41	0.197
12.96	12.98	113.41	0.197	1	13.97	13.99	91.87	0.236
12.98	12.99	86.80	0.197	1	13.99	14.00	86.17	0.197
12.99	13.01	126.09	0.236	1	14.00	14.02	118.48	0.118
13.01	13.02	101 38	0.276		14.02	14.03	153 33	0.157
13.02	13.02	109.61	0.276		14.03	14.05	74 13	0.157
13.02	13.04	109.01	0.270		14.05	14.05	80.07	0.137
13.04	13.00	120.02	0.230		14.05	14.00	100.11	0.118
13.00	13.07	107.08	0.137		14.00	14.08	100.11	0.079
13.07	13.09	110.88	0.354		14.08	14.10	69.70	0.118
13.09	13.10	77.93	0.157		14.10	14.11	70.96	0.157
13.10	13.12	95.67	0.354		14.11	14.13	63.99	0.118
13.12	13.13	114.05	0.276		14.13	14.14	62.09	0.118
13.13	13.15	95.04	0.197		14.14	14.16	85.54	0.236
13.15	13.16	87.44	0.236		14.16	14.17	62.73	0.197
13.16	13.18	86.17	0.157		14.17	14.19	86.80	0.157
13.18	13.19	97.57	0.276		14.19	14.20	78.57	0.197
13.19	13.21	102.64	0.197	1	14.20	14.22	72.23	0.157
13.21	13.23	82.37	0.197	1	14.22	14.24	82.37	0.118
13.23	13.24	147.00	0.236	1	14.24	14.25	57.02	0.157
13.24	13.26	159.03	0.118		14.25	14 27	74 76	0.118
13.21	13.20	88.07	0.394		14.22	14.28	71.60	0.118
13.20	13.27	08.07	0.334		14.27	14.20	54.40	0.118
13.27	13.29	90.21	0.230		14.20	14.30	04.41	0.118
13.29	13.30	106.44	0.157		14.30	14.31	94.41	0.137
13.30	13.32	100.44	0.137		14.31	14.33	94.41	0.118
13.32	13.33	120.38	0.197		14.33	14.34	/3.50	0.157
13.33	13.35	97.57	0.197		14.34	14.36	67.80	0.157
13.35	13.37	123.55	0.118		14.36	14.38	104.54	0.118
13.37	13.38	82.37	0.276		14.38	14.39	60.19	0.118
13.38	13.40	122.92	0.354		14.39	14.41	62.09	0.118
13.40	13.41	109.61	0.394		14,41	14.42	82.37	0.118
13.41	13.43	167.27	0.276		14.42	14.44	57.66	0.118
13.43	13.44	102.64	0.197		14,44	14.45	58.92	0.118
13.44	13.46	87.44	0.236		14.45	14.47	59.56	0.118
13.46	13.47	98.21	0.157		14.47	14.48	74.13	0.118
13.47	13.49	94.41	0.157	1	14.48	14.50	70.96	0.157
13.49	13.51	84.27	0.236	1	14.50	14.52	88.70	0.157
13.51	13.52	100.74	0.157	1	14.52	14.53	63.99	0.157
13.52	13 54	107.08	0 3 5 4		14 53	14 55	69 70	0.118
13.54	13.55	89.97	0.236		14 55	14 56	77 30	0.118
13.54	13.55	86.17	0.230		14.55	14.50	94.41	0.118
12.57	13.57	102.64	0.107		14.50	14.50	50.56	0.118
13.57	13.36	102.04	0.197		14.50	14.39	29.30	0.118
13.38	13.00	100.09	0.394	ł	14.39	14.01	00.43 53.97	0.110
13.60	15.61	167.27	0.236	ł	14.61	14.62	53.86	0.118
13.61	13.63	123.55	0.472	1	14.62	14.64	52.59	0.118
13.63	13.65	120.38	0.394	ł	14.64	14.66	55.12	0.118
13.65	13.66	146.36	0.354	l l	14.66	14.67	76.03	0.236
13.66	13.68	83.64	0.906		14.67	14.69	69.06	0.118
13.68	13.69	142.56	0.197		14.69	14.70	68.43	0.157
13.69	13.71	105.18	0.197		14.70	14.72	79.20	0.118
13.71	13.72	85.54	0.157		14.72	14.73	60.83	0.118
13.72	13.74	105.81	0.276	1	14.73	14.75	86.80	0.276
13.74	13.75	154.60	0.197	1	14.75	14.76	92.51	0.197

Table F-15: Highway 65 #11 IRI and Rut D	ata for the Full-Depth Lanes

Starting	Ending	IRI	Rut Depth		Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)		Log Mile	Log Mile	(in/mi)	(inches)
12.74	12.76	134.32	0.471		13.75	13.77	176.14	0.196
12.76	12.78	138.76	0.353		13.77	13.79	116.58	0.275
12.78	12.79	107.71	0.275		13.79	13.80	105.18	0.314
12.79	12.81	129.89	0.510		13.80	13.82	130.52	0.275
12.81	12.82	145.09	0.236		13.82	13.83	121.65	0.275
12.82	12.84	153.33	0.393		13.83	13.85	110.25	0.157
12.84	12.85	196.42	0.707		13.85	13.86	87.44	0.236
12.85	12.87	233.80	0.314		13.86	13.88	107.71	0.196
12.87	12.88	145.73	0.236		13.88	13.89	103.28	0.157
12.88	12.90	139.39	0.275		13.89	13.91	101.38	0.236
12.90	12.92	110.25	0.314		13.91	13.92	105.18	0.196
12.92	12.93	128.62	0.275		13.92	13.94	108.98	0.314
12.93	12.95	107.08	0.236		13.94	13.96	195.78	0.157
12.95	12.96	117.85	0.510		13.96	13.97	265.48	0.236
12.96	12.98	112.78	0.314		13.97	13.99	169.17	0.118
12.98	12.90	143.19	0.157		13.99	14.00	103.28	0.116
12.90	13.01	110.88	0.137		14.00	14.00	176 77	0.150
12.99	13.01	226.20	0.230		14.00	14.02	307.03	0.157
13.01	13.02	145 72	0.106		14.02	14.05	150.02	0.137
13.02	13.04	145.75	0.190		14.05	14.05	172.61	0.110
13.04	13.00	01.97	0.314		14.03	14.00	1/3.01	0.118
13.00	13.07	91.8/	0.314		14.06	14.08	214./9	0.079
13.07	13.09	102.01	0.196		14.08	14.10	147.63	0.118
13.09	13.10	103.91	0.196		14.10	14.11	168.54	0.118
13.10	13.12	165.37	0.196		14.11	14.13	126.09	0.118
13.12	13.13	151.43	0.196		14.13	14.14	145.73	0.118
13.13	13.15	192.61	0.432		14.14	14.16	114.68	0.118
13.15	13.16	134.32	0.432		14.16	14.17	215.42	0.118
13.16	13.18	115.32	0.196		14.17	14.19	162.20	0.118
13.18	13.19	105.81	0.196		14.19	14.20	162.84	0.118
13.19	13.21	155.87	0.196		14.20	14.22	252.17	0.118
13.21	13.23	158.40	0.236		14.22	14.24	135.59	0.118
13.23	13.24	212.89	0.236		14.24	14.25	149.53	0.118
13.24	13.26	198.95	0.196		14.25	14.27	152.70	0.079
13.26	13.27	110.88	0.314		14.27	14.28	174.24	0.157
13.27	13.29	160.93	0.196		14.28	14.30	126.72	0.118
13.29	13.30	122.92	0.353		14.30	14.31	161.57	0.118
13.30	13.32	131.79	0.275		14.31	14.33	197.68	0.157
13.32	13.33	186.28	0.157		14.33	14.34	193.88	0.157
13.33	13.35	152.06	0.275		14.34	14.36	124.82	0.118
13.35	13.37	126.72	0.510		14.36	14.38	138.76	0.118
13.37	13.38	114.05	0.432		14.38	14.39	160.30	0.079
13.38	13.40	115.95	0.275		14.39	14.41	151.43	0.079
13.40	13.41	114.05	0.275		14.41	14.42	176.14	0.118
13.41	13.43	112.78	0.353		14.42	14.44	166.00	0.118
13.43	13.44	117.85	0.510		14.44	14.45	122.92	0.157
13.44	13.46	110.88	0.314		14.45	14.47	139.39	0.118
13.46	13.47	106.44	0.196		14.47	14.48	171.71	0.157
13.47	13.49	98.21	0.196		14.48	14.50	240.13	0.118
13.49	13.51	104.54	0.196		14.50	14.52	96.31	0.196
13.51	13.52	155.23	0.236		14.52	14.53	93.14	0.118
13.52	13.54	122.92	0.236		14.53	14.55	72.23	0.196
13.54	13.55	134.32	0.275		14.55	14.56	73.50	0.118
13.55	13.57	121.02	0.236		14.56	14.58	76.67	0.118
13.57	13.58	122.28	0.275		14.58	14.59	75.40	0.118
13.58	13.60	133.06	0.196		14.59	14.61	77.93	0.157
13.60	13.61	186.91	0.236		14.61	14.62	86.17	0.157
13.61	13.63	163 47	0.550		14.67	14 64	102.64	0 157
13.63	13.65	247 10	0 353		14 64	14 66	75 40	0.236
13.65	13.66	363.69	0.275		14.66	14.67	77 93	0 1 1 8
13.66	13.68	117.22	0.196		14.67	14 69	99.48	0 1 1 8
13.68	13.60	148 00	0.136		14.60	14.00	91 97	0.118
13.60	13.05	185.50	0.230		14.09	14.70	148 76	0.110
13.05	13.71	121 02	0 303		14.70	14.73	71.60	0157
13.71	13.72	108 35	0.333		14.72	14.75	77 30	0.137
13.72	13.74	170.55	0.726		14.75	14.75	81 72	0,110
13./4	13./3	129,23	V.230	1	14.73	14./0	01./3	0.110

Table F-16: Highway 65 #12 IRI and Rut Data for the Stone Base Lanes

Starting	Ending	IRI	Rut Depth		Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)		Log Mile	Log Mile	(in/mi)	(inches)
16.21	16.22	81.10	0.157		17.22	17.23	71.60	0.236
16.22	16.24	58.92	0.118		17.23	17.25	120.38	0.276
16.24	16.26	62.73	0.118		17.25	17.26	53.86	0.197
16.26	16.27	78.57	0.118		17.26	17.28	83.64	0.197
16.27	16.29	51.96	0.157	1	17.28	17.30	100.74	0.197
16.29	16.30	69.70	0.236	1	17.30	17.31	60.19	0.197
16.30	16.32	62.73	0.157	1	17.31	17.33	79.20	0.276
16.32	16.33	58.29	0.118		17.33	17.34	53.86	0.197
16.33	16.35	55.12	0.157	1	17.34	17.36	63.99	0.118
16.35	16.36	80.47	0.118	1	17.36	17.37	76.03	0.197
16 36	16 38	62.73	0.197		17.37	17 39	52.59	0.157
16.38	16.30	144.46	0.157		17.39	17.0	73 50	0.157
16.30	16.0	74.13	0.137		17.35	17.40	84.00	0.197
16.41	16.42	61.46	0.113		17.40	17.42	76.67	0.197
16.41	16.43	61.40	0.137		17.42	17.44	70.07	0.197
10.43	10.44	69.70	0.157		17.44	17.45	33.70	0.230
16.44	16.46	/3.50	0.157		17.45	17.47	69.70	0.157
16.46	16.47	55.12	0.118		17.47	17.48	74.76	0.157
16.47	16.49	76.67	0.118		17.48	17.50	83.00	0.157
16.49	16.50	54.49	0.157		17.50	17.51	62.73	0.118
16.50	16.52	44.35	0.118		17.51	17.53	81.73	0.157
16.52	16.53	51.96	0.157		17.53	17.54	67.16	0.197
16.53	16.55	60.83	0.157		17.54	17.56	83.00	0.157
16.55	16.57	82.37	0.157		17.56	17.58	86.17	0.157
16.57	16.58	72.23	0.197		17.58	17.59	66.53	0.118
16.58	16.60	69.70	0.197		17.59	17.61	62.09	0.118
16.60	16.61	58.92	0.118	1	17.61	17.62	65.89	0.197
16.61	16.63	51.32	0.197	1	17.62	17.64	55.12	0.157
16.63	16.64	53.86	0.157	1	17.64	17.65	79.83	0.157
16.64	16.66	77.93	0.197	1	17.65	17.67	87.44	0.157
16.66	16.67	78.57	0.236		17.67	17.68	86.80	0.157
16.67	16.69	62.09	0.157		17.68	17.70	62.09	0.118
16.69	16.71	75 40	0157		17.70	17.72	53 22	0.157
16.05	16.72	57.66	0.197		17.70	17.72	72.23	0.157
16.77	16.72	67.16	0.157		17.72	17.75	84.90	0.157
16.72	16.74	07.10	0.113		17.75	17.75	105.18	0.157
16.74	16.73	97.57	0.157		17.75	17.70	65.90	0.157
16.73	16.77	04.90 73.32	0.137		17.70	17.70	80.24	0.270
10.77	16.78	72.25	0.197		17.70	17.79	<u> </u>	0.197
10.78	16.80	00.19	0.197		17.79	17.81	/9.20	0.157
16.80	16.81	46.89	0.197		17.81	17.82	89.97	0.157
16.81	16.83	62.09	0.157		17.82	17.84	88.07	0.118
16.83	16.85	62.09	0.197		17.84	17.86	121.65	0.157
16.85	16.86	103.28	0.157		17.86	17.87	179.94	0.157
16.86	16.88	72.23	0.197		17.87	17.89	249.64	0.118
16.88	16.89	58.92	0.118		17.89	17.90	121.02	0.236
16.89	16.91	77.93	0.118		17.90	17.92	132.42	0.157
16.91	16.92	58.92	0.157		17.92	17.93	147.63	0.157
16.92	16.94	74.13	0.157		17.93	17.95	100.74	0.157
16.94	16.95	81.73	0.157		17.95	17.96	91.87	0.157
16.95	16.97	80.47	0.276		17.96	17.98	74.76	0.157
16.97	16.99	91.87	0.118		17.98	17.99	81.73	0.157
16.99	17.00	105.81	0.118		17.99	18.01	57.66	0.118
17.00	17.02	62.73	0.118	1	18.01	18.03	72.86	0.118
17.02	17.03	66.53	0.157	1	18.03	18.04	71.60	0.157
17.03	17.05	67.80	0.157	1	18.04	18.06	86.80	0.118
17.05	17.06	53.86	0.118	1	18.06	18.07	71.60	0.236
17.06	17.08	84.90	0.197	1	18.07	18.09	100.11	0.118
17.08	17.09	84.27	0.276	1	18.09	18.10	90.60	0.118
17.09	17.11	95.04	0.157	1	18,10	18.12	63.99	0.118
17 11	17.12	54.49	0.157	1	18.12	18 13	129.25	0.118
17 12	17.12	83.64	0.157		18 13	18.15	129.89	0.157
17.12	17.14	70 33	0.157		18.15	18.17	300 33	0.157
17.14	17.10	77.72	0.157		18.15	18.19	153.06	0.107
17.10	17.17	66 53	0.157		18.17	18 20	207.10	0.157
17.17	17.15	65.76	0.107		18 20	18.20	0/ /1	0.270
17.19	17.20	03.20	0.197		10.20	10.21	94.41	0.157
17.20	17,22	93.77	0.19/		18.21	18.25	87.44	0.157

Starting	Ending	IRI	Rut Depth	Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)	Log Mile	Log Mile	(in/mi)	(inches)
0.00	0.02	587.98	0.276	1.01	1.03	65.26	0.197
0.00	0.02	116.58	0.276	1.01	1.05	82 27	0.137
0.02	0.05	74.12	0.276	1.03	1.04	62.37	0.230
0.03	0.03	74.13	0.270	1.04	1.00	33.12	0.270
0.05	0.06	93.14	0.276	1.00	1.07	87.44	0.276
0.06	0.08	95.04	0.236	1.07	1.09	63.99	0.197
0.08	0.09	84.90	0.276	1.09	1.10	67.80	0.276
0.09	0.11	101.38	0.236	1.10	1.12	67.80	0.276
0.11	0.12	51.96	0.276	1.12	1.13	66.53	0.236
0.12	0.14	77.30	0.236	1.13	1.15	60.19	0.236
0.14	0.16	65.89	0.236	1.15	1.17	70.96	0.236
0.16	0.17	70.96	0.236	1.17	1.18	81.73	0.276
0.17	0.19	63.36	0.236	1.18	1.20	68.43	0.276
0.19	0.20	41.18	0.276	1.20	1.21	74.13	0.236
0.20	0.22	74.13	0.276	1.21	1.23	66.53	0.197
0.22	0.23	62.09	0.276	1.23	1.24	81.10	0.197
0.23	0.25	57.66	0.276	1.24	1.26	88.07	0.236
0.25	0.26	77.93	0.276	1 26	1.27	62.73	0.236
0.25	0.20	51.96	0.276	1.20	1.27	62.09	0.236
0.20	0.20	74.76	0.276	1.27	1.20	69.06	0.236
0.20	0.30	73.50	0.276	1.23	1.30	76.03	0.230
0.30	0.31	/3.30	0.276	1.30	1.32	70.03	0.270
0.31	0.33	107.08	0.276	1.32	1.34	92.51	0.236
0.33	0.34	108.35	0.236	1.34	1.35	83.64	0.236
0.34	0.36	70.33	0.276	1.35	1.37	67.16	0.236
0.36	0.37	65.26	0.236	1.37	1.38	65.26	0.276
0.37	0.39	58.29	0.236	1.38	1.40	76.03	0.236
0.39	0.40	55.76	0.276	1.40	1.41	72.23	0.276
0.40	0.42	53.86	0.236	1.41	1.43	92.51	0.236
0.42	0.43	74.76	0.236	1.43	1.44	100.74	0.276
0.43	0.45	77.30	0.236	1.44	1.46	71.60	0.197
0.45	0.47	72.23	0.236	1.46	1.48	93.14	0.197
0.47	0.48	60.83	0.236	1.48	1.49	76.03	0.236
0.48	0.50	81.10	0.276	1.49	1.51	89.97	0.197
0.50	0.51	75.40	0.276	1.51	1.52	74.76	0.276
0.51	0.53	80.47	0.276	1.52	1.54	90.60	0.236
0.53	0.54	61.46	0.236	1.54	1.55	68.43	0.236
0.54	0.56	93 14	0.276	1.55	1.57	84 27	0.276
0.56	0.57	181 21	0.236	1.55	1.59	72.86	0.236
0.50	0.57	176.14	0.230	1.57	1.50	90.60	0.236
0.57	0.55	303.40	0.435	1.50	1.00	03 77	0.236
0.53	0.67	126.72	0.270	1.00	1.02	62.26	0.230
0.01	0.02	150.22	0.230	1.02	1.05	82.00	0.230
0.62	0.04	107.90	0.276	1.05	1.05	83.00	0.230
0.64	0.65	181,21	0.276	1.05	1.00	83.04	0.313
0.65	0.67	198.32	0.276	1.66	1.68	/9.83	0.276
0.67	0.68	105.18	0.236	1.68	1.69	81.73	0.276
0.68	0.70	78.57	0.276	1.69	1.71	89.34	0.276
0.70	0.71	64.63	0.276	1.71	1.72	90.60	0.236
0.71	0.73	63.36	0.276	1.72	1.74	79.20	0.236
0.73	0.75	76.03	0.236	1.74	1.76	83.00	0.236
0.75	0.76	64.63	0.276	1.76	1.77	78.57	0.236
0.76	0.78	56.39	0.197	1.77	1.79	81.10	0.315
0.78	0.79	81.10	0.236	1.79	1.80	78.57	0.315
0.79	0.81	74.76	0.236	1.80	1.82	71.60	0.236
0.81	0.82	76.67	0.236	1.82	1.83	88.70	0.276
0.82	0.84	83.00	0.236	1.83	1.85	70.96	0.276
0.84	0.85	100.11	0.236	1.85	1.86	102.64	0.236
0.85	0.87	75.40	0.236	1.86	1.88	65.89	0.276
0.87	0.89	84.27	0.197	1.88	1.90	67.16	0.276
0.89	0.90	89.97	0.236	1.90	1.91	86.80	0.276
0.90	0.92	89.34	0.236	1.91	1.93	74,13	0.236
0.97	0.93	57.02	0.236	1 93	1 94	78 57	0.157
0.02	0.95	79.20	0.276	1.95	1.94	96.04	0.276
0.93	0.95	12/ 10	0.270	1.5+	1.50	80.07	0.270
0.93	0.70	67.12	0.270	1.90	1.7/	92.00	0.230
0.90	0.90	60.04	0.230	1.97	2.00	60.00	0.230
0.98	0.99	74.12	0.230	1.99	2.00	72 50	0.230
0.99	1.01	/4.13	V.2/0	I 2.00	2.02	/3.30	U.230

Table F-17: Highway 412 #10 IRI and Rut Data for the Stone Base Lanes

Stantin a	Tedlan	mı	Dest Dauth	1	Stantin a	Tadian	TDI	Det Dauth
Starting	Ending	IKI (in/mi)	Kut Depth		Starting	Ending	IKI (in/mi)	Kut Deptn
		7/ 13	0.276		2.00	2 02	73 50	0.236
1.01	1.01	74.13	0.270		2.00	2.02	79.30	0.230
1.01	1.03	82 37	0.137		2.02	2.03	73.20	0.236
1.03	1.04	55.17	0.230		2.03	2.03	82.37	0.230
1.04	1.00	87.44	0.276		2.03	2.07	102.01	0.276
1.00	1.07	63.00	0.197		2.07	2.00	68.43	0.276
1.07	1.05	67.80	0.177		2.00	2.10	83.00	0.276
1.05	1.10	67.80	0.276		2.10	2.11	70.83	0.270
1.10	1.12	66.53	0.276		2.11	2.15	107 71	0.236
1.12	1.15	60.55	0.236		2.15	2.14	107.71	0.236
1.15	1.13	70.96	0.236		2.14	2.10	79.83	0.236
1.13	1.17	81 73	0.236		2.10	2.17	77.03	0.236
1.18	1 20	68.43	0.276		2.19	2.21	81 73	0.197
1.20	1.21	74.13	0.236		2.21	2.22	70.33	0.276
1.21	1.23	66.53	0.197		2.22	2.24	104.54	0.315
1.23	1.24	81.10	0.197		2.24	2.25	75.40	0.236
1.24	1.26	88.07	0.236		2.25	2.27	88.07	0.276
1.26	1.27	62.73	0.236		2.27	2.28	102.01	0.276
1.27	1.29	62.09	0.236		2.28	2,30	178.04	0.236
1.29	1.30	69.06	0.236		2.30	2.31	81.10	0.276
1.30	1.32	76.03	0.276		2.31	2.33	69.06	0.276
1.32	1.34	92.51	0.236		2.33	2.35	65.26	0.276
1.34	1.35	83.64	0.236		2.35	2.36	72.86	0.276
1.35	1.37	67.16	0.236		2.36	2.38	67.16	0.276
1.37	1.38	65.26	0.276		2.38	2.39	57.02	0.276
1.38	1.40	76.03	0.236		2.39	2.41	57.66	0.236
1.40	1.41	72.23	0.276		2.41	2.42	56.39	0.276
1.41	1.43	92.51	0.236		2.42	2.44	88.70	0.276
1.43	1.44	100.74	0.276		2.44	2.45	83.64	0.276
1.44	1.46	71.60	0.197		2.45	2.47	99.48	0.276
1.46	1.48	93.14	0.197		2.47	2.49	91.24	0.276
1.48	1.49	76.03	0.236		2.49	2.50	86.17	0.276
1.49	1.51	89.97	0.197		2.50	2.52	89.97	0.236
1.51	1.52	74.76	0.276		2.52	2.53	79.20	0.236
1.52	1.54	90.60	0.236		2.53	2.55	62.73	0.276
1.54	1.55	68.43	0.236		2.55	2.56	152.06	0.236
1.55	1.57	84.27	0.276		2.56	2.58	88.70	0.197
1.57	1.58	72.86	0.236		2.58	2.59	94.41	0.236
1.58	1.60	90.60	0.236		2.59	2.61	96.31	0.236
1.60	1.62	93.77	0.236		2.61	2.63	89.97	0.236
1.62	1.63	63.36	0.236		2.63	2.64	67.80	0.276
1.63	1.65	83.00	0.236		2.64	2.66	132.42	0.236
1.65	1.66	83.64	0.315		2.66	2.67	81.10	0.236
1.66	1.68	79.83	0.276		2.67	2.69	98.84	0.236
1.68	1.69	81.73	0.276		2.69	2.70	88.70	0.236
1.69	1.71	89.34	0.276		2.70	2.72	67.80	0.236
1.71	1.72	90.60	0.236		2.72	2.73	88.07	0.236
1.72	1.74	79.20	0.236		2.73	2.75	200.22	0.236
1.74	1.76	83.00	0.236		2.75	2.77	95.04	0.236
1.76	1.77	78.57	0.236		2.77	2.78	196.42	0.197
1.77	1.79	81.10	0.315		2.78	2.80	94.41	0.236
1.79	1.80	78.57	0.315		2.80	2.81	89.34	0.236
1.80	1.82	/1.00	0.230		2.81	2.85	92.31	0.276
1.82	1.85	00./U	0.276		2.85	2.84	01.40	0.230
1.85	1.80	103.50	0.270		2.84	2.80 2.97	72 50	0.270
1.00	1.00	65 90	0.230		2.00	2.0/	106.44	0.230
1.00	1.00	67 16	0.270		2.0/	2.07	06 21	0.19/
1.00	1.90	86.80	0.270		2.07	2.90	86.17	0.230
1.90	1.91	74 12	0.270		2.90	2.72	77 20	0.270
1.91	1.95	78.57	0.250		2.92	2.94	113 41	0.230
1.95	1.94	96.94	0.137		2.94	2.95	103.78	0.236
1.94	1.90	89.97	0.236		2.95	2.98	81 10	0.236
1.97	1.99	83.00	0.236		2.98	3.00	73.50	0.236
1.99	2.00	60.83	0.236		3.00	3.01	66.53	0.197
		00.00	0.200		2.00	2.01	00.00	

Table F-18: Highway 412 #11 IRI and Rut Data for the Stone Base Lanes

Starting	Ending	IRI	Rut Depth		Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)		Log Mile	Log Mile	(in/mi)	(inches)
3.00	3.01	66.53	0.197		4.01	4.02	75.40	0.236
3.01	3.03	70.33	0.197		4.02	4 04	76.67	0.197
3.01	3.03	106.44	0.177		4.04	4.05	95.54	0.197
3.03	3.04	84.00	0.270		4.04	4.03	03.34	0.197
3.04	3.06	84.90	0.236		4.05	4.07	117.22	0.197
3.06	3.08	107.71	0.236		4.07	4.09	115.95	0.197
3.08	3.09	161.57	0.236		4.09	4.10	77.30	0.236
3.09	3.11	96.94	0.236		4.10	4.12	69.06	0.236
3.11	3.12	71.60	0.157		4.12	4.13	82.37	0.236
3.12	3.14	78.57	0.236		4.13	4.15	94.41	0.236
3 14	3.15	110.88	0.236		4.15	4 16	77 30	0.236
2.15	2.17	70.92	0.236		4.15	4.10	70.32	0.250
3.13	3.17	79.83	0.230		4.10	4.10	70.33	0.270
3.17	3.18	53.22	0.236		4.18	4.19	/8.5/	0.230
3.18	3.20	69.70	0.236		4.19	4.21	67.16	0.236
3.20	3.22	73.50	0.236		4.21	4.23	77.93	0.197
3.22	3.23	84.27	0.236		4.23	4.24	88.70	0.197
3.23	3.25	85.54	0.236		4.24	4.26	81.73	0.197
3.25	3.26	82.37	0.197		4.26	4.27	72.86	0.236
3.26	3.28	80.47	0.236		4.27	4.29	77.93	0.236
3.28	3 29	77 30	0.276		4 29	4 30	83.64	0.236
3.20	2 2 1	70.20	0.276		1.29	1.30	74.76	0.236
2.23	2.21	79.20	0.230		4.30	4.32	74.76	0.250
3.31	3.32	/9.83	0.236		4.32	4.33	/4./6	0.197
3.32	3.34	69.70	0.236		4.33	4.35	64.63	0.236
3.34	3.36	76.03	0.236		4.35	4.37	91.87	0.236
3.36	3.37	66.53	0.236		4.37	4.38	83.64	0.236
3.37	3.39	70.96	0.236		4.38	4.40	70.33	0.236
3.39	3.40	93.14	0.236		4.40	4.41	56.39	0.236
3.40	3.42	131.79	0.394		4.41	4.43	66.53	0.236
3.42	3.43	98 84	0.236		4 4 3	4 4 4	88 70	0.197
3.43	3.45	92.51	0.236		4 44	4 46	67.16	0.236
2.45	2.46	95.54	0.236		4.44	4.40	77.20	0.250
3.43	3.40	03.34	0.230		4.40	4.47	77.30	0.197
3.46	3.48	82.37	0.236		4.47	4.49	69.06	0.236
3.48	3.50	93.14	0.276		4.49	4.50	60.19	0.197
3.50	3.51	63.99	0.276		4.50	4.52	69.06	0.236
3.51	3.53	63.99	0.276		4.52	4.54	93.14	0.236
3.53	3.54	60.83	0.276		4.54	4.55	92.51	0.276
3.54	3.56	61.46	0.236		4.55	4.57	92.51	0.197
3.56	3.57	66.53	0.236		4.57	4.58	95.04	0.197
3 57	3 59	81 73	0 197		4 58	4 60	106.44	0.197
3.50	3.60	74.13	0.197		4.60	1.60	05.67	0.157
2.60	2.00	97 64	0.107		4.00	4.01	70.20	0.137
3.00	3.02	83.04	0.197		4.01	4.03	19.20	0.230
3.62	3.64	/0.33	0.197		4.63	4.64	117,22	0.197
3.64	3.65	96.31	0.236		4.64	4.66	95.04	0.236
3.65	3.67	67.80	0.236		4.66	4.68	100.11	0.197
3.67	3.68	89.34	0.236		4.68	4.69	100.74	0.236
3.68	3.70	75.40	0.236		4.69	4.71	77.93	0.197
3.70	3.71	80.47	0.236		4.71	4.72	70.33	0.197
3.71	3.73	84.90	0.197		4.72	4.74	72.86	0.197
3.73	3.74	97.57	0.118	1	4.74	4,75	79.83	0.197
3.74	3.76	105.18	0.197		4.75	4.77	65.89	0.197
3 76	3 77	88 70	0.236		4 77	4.79	59.55	0.107
277	2.70	110.75	0.230		A 70	1,10	71.40	0.197
3.11	3./9	00.00	0.270		4./0	4.00	/1.00	0.19/
3.79	3.81	90.60	0.118		4.80	4.82	77.30	0.236
3.81	3.82	91.24	0.236		4.82	4.83	83.00	0.236
3.82	3.84	86.17	0.236		4.83	4.85	72.86	0.197
3.84	3.85	104.54	0.236		4.85	4.86	68.43	0.197
3.85	3.87	94.41	0.236		4.86	4.88	110.88	0.157
3.87	3.88	85.54	0.236	1	4.88	4.89	84.27	0.197
3,88	3,90	74,13	0.236	1	4,89	4,91	70.33	0.197
3 00	3 01	85 54	0.236		4 01	4 07	95.04	0.107
2 01	2.02	107.71	0.230		4.02	4.94	104 54	0.197
2.02	2.93	10/./1	0.230		4.92	4.94	75.40	0.19/
3.93	3.95	120.09	0.236		4.94	4.96	/5.40	0.276
3.95	3.96	93.77	0.236		4.96	4.97	74.76	0.197
3.96	3.98	91.87	0.236		4.97	4.99	74.13	0.236
3.98	3.99	87.44	0.197		4.99	5.00	90.60	0.197
3.99	4.01	102.01	0.197		5.00	5.02	72.23	0.197

Table F-19: Highway 412 #12 IRI and Rut Data for the Stone Base Lanes

3.00	3.01	74.76	0.236	4.01	4.02	57.66
3.01	3.03	58.29	0.197	4.02	4.04	46.25
3.03	3.04	76.67	0.236	4.04	4.05	88.70
3.04	3.06	61.46	0.197	4.05	4.07	67.80
3.06	3.08	89.97	0.197	4.07	4.09	86.80
3.08	3.09	82.37	0.197	4.09	4.10	57.66
3.09	3.11	67.16	0.197	4.10	4.12	70.33
3.11	3.12	91.24	0.236	4.12	4.13	91.24
3.12	3.14	88.07	0.236	4.13	4.15	57.02
3.14	3.15	84.27	0.276	4.15	4.16	68.43
3.15	3.17	73.50	0.197	4.16	4.18	60.83
3.17	3.18	74.76	0.197	4.18	4.19	67.80
3.18	3.20	61.46	0.236	4.19	4.21	67.16
3.20	3.22	64.63	0.354	4.21	4.23	70.96
3.22	3.23	81.10	0.197	4.23	4.24	74.13
3.23	3.25	69.70	0.157	4.24	4.26	72.86
3.25	3.26	72.86	0.236	4.26	4.27	60.83
3.26	3.28	55.12	0.197	4.27	4.29	52.59
3.28	3.29	85.54	0.354	4.29	4.30	63.36
3.29	3.31	74.13	0.157	4.30	4.32	55.12
3.31	3.32	79.83	0.197	4.32	4.33	83.00
3.32	3.34	74.76	0.197	4.33	4.35	83.00
3.34	3.36	75.40	0.197	4.35	4.37	101.38
3.36	3.37	68.43	0.157	4.37	4.38	72.86
3.37	3.39	57.66	0.197	4.38	4.40	63.99
3.39	3.40	86.17	0.236	4.40	4.41	76.03

Table F-20: Highway 412 #12 IRI and Rut Data for the Full-Depth Lanes

Starting Ending IRI Rut Depth Starting Ending

IRI

Rut Depth

Log Mile	Log Mile	(in/mi)	(inches)	Log Mile	Log Mile	(in/mi)	(inches)
3.00	3.01	74.76	0.236	4.01	4.02	57.66	0.197
3.01	3.03	58.29	0.197	4.02	4.04	46.25	0.197
3.03	3.04	76.67	0.236	4.04	4.05	88.70	0.197
3.04	3.06	61.46	0.197	4.05	4.07	67.80	0.236
3.06	3.08	89.97	0.197	4.07	4.09	86.80	0.197
3.08	3.09	82.37	0.197	4.09	4 10	57.66	0.197
3.00	3.11	67.16	0.197	4.10	4.10	70.33	0.197
2 11	2.12	01.10	0.127	4.10	4.12	01.24	0.157
3.11	3.12	91.24	0.230	4.12	4.15	91.24	0.157
3.12	3.14	88.07	0.236	4.13	4.15	57.02	0.157
3.14	3.15	84.27	0.276	4.15	4.16	68.43	0.197
3.15	3.17	73.50	0.197	4.16	4.18	60.83	0.197
3.17	3.18	74.76	0.197	4.18	4.19	67.80	0.276
3.18	3.20	61.46	0.236	4.19	4.21	67.16	0.236
3.20	3.22	64.63	0.354	4.21	4.23	70.96	0.157
3.22	3.23	81.10	0.197	4.23	4.24	74.13	0.236
3.23	3.25	69.70	0.157	4,24	4.26	72.86	0.236
3.25	3.26	72.86	0.236	4.26	4.27	60.83	0.236
3 26	3 28	55.12	0 197	4 2.7	4 2 9	52.59	0 197
3.20	3 20	85.54	0.157	4.20	4.30	63.36	0.197
2 20	2 2 1	74 12	0.554	4.20	4.20	55 12	0.197
2.23	2.22	74.13	0.137	4.30	4.32	93.00	0.197
3.31	3.32	79.83	0.197	4.32	4.33	83.00	0.197
3.32	3.34	74.76	0.197	4.33	4.35	83.00	0.197
3.34	3.36	75.40	0.197	4.35	4.37	101.38	0.197
3.36	3.37	68.43	0.157	4.37	4.38	72.86	0.197
3.37	3.39	57.66	0.197	4.38	4.40	63.99	0.197
3.39	3.40	86.17	0.236	4.40	4.41	76.03	0.236
3.40	3.42	83.64	0.236	4.41	4.43	55.76	0.236
3.42	3.43	62.73	0.118	4.43	4.44	75.40	0.197
3.43	3.45	62.73	0.236	4.44	4.46	53.22	0.197
3.45	3.46	56.39	0.236	4.46	4.47	76.67	0.236
3 46	3.48	67.16	0315	4 4 7	4 4 9	66 53	0.236
3.48	3 50	58 29	0.276	4 4 9	4 50	70.96	0.197
3.50	3.50	58.07	0.276	4.50	4.50	74.76	0.197
2.50	2.51	56.52	0.270	4.50	4.52	77.20	0.197
2.51	3.33	66.33	0.230	4.32	4.54	//.30	0.197
3.33	3.34	55.70	0.197	4.54	4.55	05.89	0.197
3.34	3.36	58.29	0.236	4.55	4.57	/5.40	0.197
3.56	3.57	52.59	0.197	4.57	4.58	100.11	0.197
3.57	3.59	63.99	0.276	4.58	4.60	66.53	0.394
3.59	3.60	46.25	0.197	4.60	4.61	62.73	0.197
3.60	3.62	77.30	0.197	4.61	4.63	86.80	0.276
3.62	3.64	79.83	0.197	4.63	4.64	136.86	0.276
3.64	3.65	64.63	0.197	4.64	4.66	76.67	0.236
3.65	3.67	65.89	0.197	4.66	4.68	74.13	0.197
3.67	3.68	72.23	0.236	4.68	4.69	60.83	0.197
3.68	3.70	62.09	0.197	4.69	4.71	73.50	0.197
3.70	3.71	69.06	0.197	4.71	4.72	81.73	0.118
3.71	3.73	45.62	0.197	4.72	4.74	67.16	0.118
3 73	3 74	65.26	0.157	4 74	4 75	86.17	0.197
3.75	3.74	50.56	0.157	4.74	4.75	57.02	0.157
2.74	2.70	59.50	0.137	4.75	4.77	57.02	0.137
2.70	3.77	64.62	0.230	4.77	4.70	55.70	0.110
3.77	3.79	04.03	0.197	4.78	4.80	09.00	0.197
3.79	3.81	83.00	0.236	4.80	4.82	66.53	0.197
3.81	3.82	56.39	0.236	4.82	4.83	75.40	0.236
3.82	3.84	75.40	0.197	4.83	4.85	61.46	0.197
3.84	3.85	72.86	0.197	4.85	4.86	59.56	0.197
3.85	3.87	59.56	0.197	4.86	4.88	76.67	0.197
3.87	3.88	63.99	0.197	4.88	4.89	77.30	0.157
3.88	3.90	53.22	0.157	4.89	4.91	53.22	0.157
3.90	3.91	66.53	0.197	4.91	4.92	77.93	0.197
3.91	3.93	69.70	0.197	4.92	4.94	51.32	0.197
3.93	3,95	62.73	0.197	4.94	4.96	74,13	0.118
3.95	3.96	113 41	0.197	4.96	4.97	69.06	0.157
3 96	3 98	75 40	0 197	4 97	4 99	76.03	0 197
3.09	3.00	61.46	0.157	4 00	5.00	86.80	0.30/
2.00	3.33	45.60	0.107	-1.77	5.00	00.00	0.374
3.99	4,01	40.02	0.19/	5.00	5.02	93,14	0.230

Starting	Ending	IRI	Rut Depth	Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)	Log Mile	Log Mile	(in/mi)	(inches)
5.27	5.28	76.67	0.236	6.28	6.29	112.15	0.197
5.28	5.30	70.33	0.276	6.29	6.31	62.73	0.236
5.30	5.31	65.26	0.236	6.31	6.32	108.98	0.157
5 31	5 33	88.07	0.197	6.32	634	82 37	0157
5 3 3	5 34	80.47	0.197	634	635	01.24	0.107
5.33	5 36	04.41	0.197	635	6.37	108.08	0.157
5.34	5.30	62.00	0.197	6.33	6.37	100.30	0.107
5.30	5.37	82.00	0.197	0.37	0.38	12.23	0.197
5.37	5.39	83.00	0.118	6.38	6.40	91.87	0.197
5.39	5.41	80.47	0.236	6.40	6.42	71.60	0.197
5.41	5.42	89.34	0.236	6.42	6.43	88.07	0.197
5.42	5.44	82.37	0.236	6.43	6.45	79.83	0.197
5.44	5.45	70.96	0.236	6.45	6.46	76.67	0.236
5.45	5.47	89.97	0.236	6.46	6.48	87.44	0.197
5.47	5.48	80.47	0.236	6.48	6.49	80.47	0.157
5.48	5.50	83.00	0.236	6.49	6.51	62.73	0.157
5.50	5.51	58.92	0.236	6.51	6.52	94.41	0.236
5.51	5.53	84.27	0.197	6.52	6.54	103.91	0.197
5.53	5.55	103.91	0.197	6.54	6.56	118.48	0.197
5.55	5.56	77.30	0.157	6.56	6.57	247.74	0.197
5.56	5.58	80.47	0.236	6.57	6.59	117.85	0.197
5.58	5.59	77.93	0.236	6.59	6.60	218.59	0.197
5 59	5.61	102.64	0.157	6.60	6.62	153.96	0.236
5.61	5.67	76.67	0.197	6.62	6.63	169.80	0.250
5.67	5.62	73.50	0.197	6.62	6.65	165.00	0.315
5.64	5.65	75.50	0.197	6.65	6.65	157.12	0.230
5.04	5.03	79.83	0.230	0.03	0.00	157.15	0.230
5.65	5.67	/1.00	0.230	0.00	0.08	150.80	0.19/
5.67	5.69	/6.6/	0.197	6.68	6.70	115.32	0.276
5.69	5.70	107.08	0.197	6.70	6.71	105.18	0.197
5.70	5.72	84.90	0.197	6.71	6.73	141.93	0.197
5.72	5.73	104.54	0.157	6.73	6.74	185.64	0.157
5.73	5.75	134.32	0.276	6.74	6.76	141.29	0.276
5.75	5.76	72.23	0.197	6.76	6.77	96.94	0.276
5.76	5.78	98.21	0.157	6.77	6.79	88.70	0.315
5.78	5.79	91.24	0.197	6.79	6.80	82.37	0.315
5.79	5.81	60.83	0.197	6.80	6.82	61.46	0.276
5.81	5.83	78.57	0.157	6.82	6.84	67.80	0.236
5.83	5.84	72.23	0.197	6.84	6.85	67.80	0.276
5.84	5.86	76.67	0.197	6.85	6.87	69.70	0.236
5.86	5.87	71.60	0.197	6.87	6.88	76.03	0.197
5.87	5.89	67.16	0.236	6.88	6.90	74 76	0 2 3 6
5.89	5 90	70.33	0.197	6.90	6.91	79.83	0.236
5.05	5.92	92.51	0.197	6.91	6.93	78.57	0.250
5.90	5.92	88.07	0.197	6.03	6.94	70.97	0.157
5.92	5.95	70.20	0.197	6.93	6.06	77.30	0.157
5.95	5.95	75.20	0.197	6.04	6.90	77.30	0.157
5.93	5.97	70.03	0.197	0.90	6.97	83.04	0.230
5.97	5.98	//.30	0.236	6.97	6.99	/3.50	0.118
5.98	0.00	103.91	0.118	0.99	7.01	/8.5/	0.19/
6.00	6.01	80.47	0.197	7.01	7.02	72.23	0.276
6.01	6.03	69.70	0.197	7.02	7.04	102.01	0.197
6.03	6.04	65.26	0.236	7.04	7.05	93.77	0.236
6.04	6.06	96.31	0.197	7.05	7.07	59.56	0.236
6.06	6.07	74.13	0.197	7.07	7.08	112.78	0.197
6.07	6.09	69.70	0.197	7.08	7.10	95.04	0.197
6.09	6.10	64.63	0.236	7.10	7.11	95.04	0.197
6.10	6.12	76.67	0.276	7.11	7.13	59.56	0.236
6.12	6.14	55.12	0.197	7.13	7.15	91.87	0.118
6.14	6.15	53.22	0.118	7.15	7.16	119.75	0.197
6.15	6.17	76.67	0.157	7.16	7.18	79.20	0.276
6.17	6.18	78.57	0.197	7.18	7.19	93.14	0.197
6.18	6.20	87.44	0.157	7.19	7.21	74.76	0.236
6.20	6.21	69.70	0.197	7,21	7.22	59.56	0.236
6.21	6.23	78 57	0.197	7.22	7.24	90.60	0.157
6.23	6.24	66 53	0 197	7.74	7.25	71.60	0 197
6.24	6.26	96.94	0.236	7.24	7.25	65.80	0.107
6.76	6.20	76.67	0.230	7.23	7 20	89.07	0.197
0.20	0.20	/0.0/	V.17/	1.41	1.47	00.07	0,17/

Table F-21: Highway 412 #13 IRI and Rut Data for the Stone Base Lanes

Table F-22: Highway	412 #13	IRI and	Rut Data	for the	e Full-	Depth	Lanes

Starting	Ending	IRI	Rut Depth	Starting
Log Mile	Log Mile	(in/mi)	(inches)	Log Mile
5.27	5.28	102.01	0.157	6.28
5.28	5.30	73.50	0.157	6.29
5.30	5.31	70.33	0.197	6.31
5.31	5.33	95.04	0.236	6.32
5.33	5.34	76.67	0.197	6.34
5.34	5.36	79.20	0.197	6.35
5.36	5.37	69.06	0.197	6.37
5.37	5.39	108.98	0.197	6.38
5.39	5.41	83.00	0.118	6.40
5.41	5.42	102.64	0.236	6.42
5.42	5.44	88.70	0.157	6.43
5.44	5.45	69.06	0.276	6.45
5.45	5.47	148.26	0.197	6.46
5.47	5.48	117.22	0.118	6.48
5.48	5.50	79.20	0.197	6.49
5.50	5.51	89.97	0.197	6.51
5.50	5 53	82.37	0.157	6.52
5 53	5 55	76.03	0.197	6.54
5.55	5.55	103.91	0.157	6.56
5.55	5.50	69.06	0.110	6.50
5.58	5.50	145.00	0.137	6.59
5.50	5.59	P4 37	0.197	6.60
5.59	5.01	04.27 91.10	0.110	6.60
5.01	5.62	01.10	0.137	0.03
5.62	5.64	120.38	0.197	0.03
5.64	5.65	86.80	0.197	6.66
5.65	5.67	70.96	0.236	6.68
5.67	5.69	95.67	0.236	6.70
5.69	5.70	98.84	0.197	6.71
5.70	5.72	112.15	0.079	6.73
5.72	5.73	152.06	0.197	6.74
5.73	5.75	125.45	0.236	6.76
5.75	5.76	158.40	0.157	6.77
5.76	5.78	74.13	0.157	6.79
5.78	5.79	93.14	0.118	6.80
5.79	5.81	88.07	0.118	6.82
5.81	5.83	80.47	0.118	6.84
5.83	5.84	84.90	0.118	6.85
5.84	5.86	58.92	0.118	6.87
5.86	5.87	76.03	0.197	6.88
5.87	5.89	81.73	0.236	6.90
5.89	5.90	81.10	0.276	6.91
5.90	5.92	76.03	0.118	6.93
5.92	5.93	67.16	0.118	6.94
5.93	5.95	124.82	0.118	6.96
5.95	5.97	102.01	0.118	6.97
5.97	5.98	70.33	0.197	6.99
5.98	6.00	62.09	0.118	7.01
6.00	6.01	101.38	0.118	7.02
6.01	6.03	82.37	0.079	7.04
6.03	6.04	67.16	0.197	7.05
6.04	6.06	89.34	0.157	7.07
6.06	6.07	62.09	0.157	7.08
6.07	6.09	88.70	0.236	7.10
6.09	6.10	116.58	0.197	7.11
6.10	6.12	93.14	0.157	7.13
6.12	6.14	84.90	0.157	7.15
6.14	6.15	88.07	0.197	7.16
6.15	6.17	147.63	0.118	7.18
6.17	6.18	105.81	0.197	7.19
6.18	6.20	95.04	0.236	7.21
6.20	6.21	127.35	0.236	7.22
6.21	6.23	81.73	0.197	7.24
6.23	6.24	74.76	0.197	7.25
6.24	6.26	102.01	0.197	7.27
6.26	6.28	84.27	0.197	
				i i i i i i i i i i i i i i i i i i i

Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)
6.28	6.29	93.77	0.197
6.29	6.31	96.94	0.197
631	6.32	74 76	0.197
6 3 2	634	67.16	0.137
6.32	6.25	67.10	0.230
0.34	6.33	07.10	0.197
6.35	6.37	94.41	0.236
6.37	6.38	71.60	0.157
6.38	6.40	99.48	0.157
6.40	6.42	96.31	0.118
6.42	6.43	91.24	0.118
6.43	6.45	86.17	0.118
6.45	6.46	95.67	0.197
6.46	6.40	62.00	0.127
0.40	0.40	79.57	0.118
0.48	0.49	/8.5/	0.118
6.49	6.51	97.57	0.118
6.51	6.52	123.55	0.157
6.52	6.54	311.73	0.118
6.54	6.56	261.68	0.118
6.56	6.57	143.83	0.118
6.57	6.59	100 11	0.079
6 50	6.60	188.91	0.236
6.60	6.60	2/0.01	0.107
0.00	0.02	246.48	0.19/
0.03	0.05	281.95	0.236
6.65	6.66	200.22	0.236
6.66	6.68	202.75	0.197
6.68	6.70	89.97	0.197
6.70	6.71	108.98	0.630
6.71	6.73	392.83	0.118
6.73	6.74	206.55	0.236
6 74	676	142.56	0.197
6.74	6.77	152.22	0.197
0.70	0.77	133.33	0.197
0.//	0.79	92.51	0.236
6.79	6.80	103.28	0.197
6.80	6.82	65.26	0.236
6.82	6.84	71.60	0.197
6.84	6.85	94.41	0.157
6.85	6.87	110.25	0.157
6.87	6.88	76.67	0.197
6.88	6.90	84.27	0.236
6.90	6.91	64 63	0.236
6.91	6.03	81.73	0.157
6.02	6.93	100.00	0.137
0.93	0.94	107.70	0.230
0.94	0.96	10/./1	0.157
6.96	6.97	68.43	0.197
6.97	6.99	84.27	0.236
6.99	7.01	147.63	0.236
7.01	7.02	79.83	0.197
7.02	7.04	75.40	0.197
7.04	7.05	74.13	0.197
7.05	7.07	81.10	0.197
7.07	7 08	77 86	0.276
7.07	7.00	62.00	0.270
7.00	7.10	03.33	0.230
/.10	/.11	0/.44	0.19/
7.11	7.13	115.32	0.157
7.13	7.15	193.25	0.197
7.15	7.16	79.83	0.197
7.16	7.18	82.37	0.276
7.18	7.19	83.64	0.276
7.19	7.21	78.57	0.157
7.21	7.22	138 76	0.236
7 22	7.22	77 02	0.107
7.24	7.2+	90.47	0.127
7.24	1.23	00.47	0.230
1.25	1.21	92.51	0.19/
7.27	7.29	78.57	0.315

Table F-23: Highway 412 #14 IRI and Rut Data for the Stone Base Lanes

Starting	Ending	τρτ	Put Depth	Starting	Ending	τρι	Put Denth
Log Mile	Log Mile	(in/mi)	(inches)	Log Mile	Log Mile	(in/mi)	(inches)
6.54	6.56	118.48	0.197	7 49	7.50	93.77	0.276
6.56	6.50	247 74	0.197	7.50	7.52	118 48	0.236
6.57	6.59	117.85	0.197	7.52	7.53	89.34	0.157
6.59	6.60	218.59	0.197	7.53	7.55	111.51	0.276
6.60	6.62	153.96	0.236	7.55	7.57	57.02	0.197
6.62	6.63	169.80	0.315	7.57	7.58	73.50	0.236
6.63	6.65	166.00	0.236	7.58	7.60	78.57	0.197
6.65	6.66	157.13	0.236	7.60	7.61	86.17	0.197
6.66	6.68	150.80	0.197	7.61	7.63	66.53	0.236
6.68	6.70	115.32	0.276	7.63	7.64	195.15	0.236
6.70	6.71	105.18	0.197	7.64	7.66	75.40	0.236
6.71	6.73	141.93	0.197	7.66	7.67	91.24	0.197
6.73	6.74	185.64	0.157	7.67	7.69	60.83	0.315
6.74	6.76	141.29	0.276	7.69	7.71	84.90	0.197
6.76	6.77	96.94	0.276	7.71	7.72	84.27	0.157
6.77	6.79	88.70	0.315	7.72	7.74	127.35	0.236
6.79	6.80	82.37	0.315	7.74	7.75	97.57	0.315
6.80	6.82	61.46	0.276	7.75	7.77	86.80	0.276
6.82	6.84	67.80	0.236	7.77	7.78	68.43	0.315
6.84	6.85	67.80	0.276	7.78	7.80	93.14	0.394
6.85	6.87	69.70	0.236	7.80	7.81	94.41	0.157
6.87	6.88	76.03	0.197	7.81	7.83	111.51	0.276
6.88	6.90	74.76	0.236	7.83	7.84	78.57	0.315
6.90	6.91	79.83	0.236	7.84	7.86	105.81	0.354
6.91	6.93	78.57	0.197	7.86	7.88	89.34	0.236
6.93	6.94	79.83	0.157	7.88	7.89	140.66	0.276
6.94	6.96	77.30	0.157	7.89	7.91	107.71	0.276
6.96	6.97	83.64	0.236	7.91	7.92	76.67	0.315
6.97	6.99	73.50	0.118	7.92	7.94	67.80	0.236
6.99	7.01	78.57	0.197	7.94	7.95	69.70	0.157
7.01	7.02	72.23	0.276	7.95	7.97	72.23	0.236
7.02	7.04	102.01	0.197	7.97	7.98	133.69	0.236
7.04	7.05	93.77	0.236	7.98	8.00	74.76	0.315
7.05	7.07	59.56	0.236	8.00	8.02	88.70	0.315
7.07	7.08	112.78	0.197	8.02	8.03	100.11	0.236
7.08	7.10	95.04	0.197	8.03	8.05	60.83	0.157
7.10	7.11	95.04	0.197	8.05	8.06	102.01	0.236
7.11	7.13	59.56	0.236	8.06	8.08	81.10	0.276
7.13	7.15	91.87	0.118	8.08	8.09	86.17	0.276
7.15	7.16	119.75	0.197	8.09	8.11	96.94	0.197
7.16	7.18	79.20	0.276	8.11	8.12	74.13	0.197
7.18	7.19	93.14	0.197	8.12	8.14	122.28	0.276
7.19	7.21	74.76	0.236	8.14	8.16	89.34	0.236
7.21	7.22	59.56	0.236	8.16	8.17	98.84	0.197
7.22	7.24	90.60	0.157	8.17	8.19	91.24	0.197
7.24	7.25	71.60	0.197	8.19	8.20	100.74	0.315
7.25	7.27	65.89	0.197	8.20	8.22	102.01	0.157
7.27	7.29	88.07	0.197	8.22	8.23	96.31	0.197
7.29	7.30	79.83	0.197	8.23	8.25	91.24	0.236
7.30	7.32	79.20	0.157	8.25	8.26	122.92	0.157
7.32	7.33	74.76	0.197	8.26	8.28	117.85	0.157
7.33	7.35	99.48	0.276	8.28	8.30	125.45	0.157
7.35	7.36	58.29	0.276	8.30	8.31	108.98	0.197
7.36	7.38	133.69	0.236	8.31	8.33	167.27	0.236
7.38	7.39	77.30	0.197	8.33	8.34	108.98	0.236
7.39	7.41	96.94	0.197	8.34	8.36	222.39	0.236
7.41	7.43	79.20	0.197	8.45	8.47	640.57	0.354
7.43	7.44	76.67	0.276	8.47	8.48	316.80	0.354
7.44	7.46	72.23	0.236	8.48	8.50	297.79	0.197
7.46	7.47	82.37	0.157	8.50	8.51	233.80	0.276
7.47	7.49	74.13	0.157	8.51	8.53	261.04	0.197

Table F-24: Highway	412 #14 IRI and Rut D	ata for the Full-Depth Lanes

G (()	T 1'	IDI		G (()	D 1'	TDI	
Starting	Ending		Rut Depth	Starting	Ending		Rut Depth
Log Mile	Log Mile	(1n/m1)	(inches)	Log Mile	Log Mile	(in/mi)	(inches)
6.54	6.56	261.68	0.118	7.53	7.55	95.67	0.197
6.56	6.57	143.83	0.118	7.55	7.57	91.87	0.236
6.57	6.59	100.11	0.079	7.57	7.58	110.88	0.197
6.59	6.60	188.81	0.236	7.58	7.60	110.25	0.236
6.60	6.62	348.48	0.197	7.60	7.61	95.67	0.236
6.63	6.65	281.95	0.236	7.61	7.63	219.23	0.276
6.65	6.66	200.22	0.236	7.63	7.64	173.61	0.236
6.66	6.68	202.75	0.197	7.64	7.66	110.25	0.197
6.68	6.70	89.97	0.197	7.66	7.67	79.83	0.236
6.70	6.71	108.98	0.630	7.67	7.69	92.51	0.197
6.71	6.73	392.83	0.118	7.69	7.71	112.15	0.197
6.73	6.74	206.55	0.236	7.71	7.72	125.45	0.197
6.74	6.76	142.56	0.197	7.72	7.74	109.61	0.236
6.76	6.77	153.33	0.197	7.74	7.75	80.47	0.197
6.77	6.79	92.51	0.236	7.75	7.77	78.57	0.236
6.79	6.80	103.28	0.197	7.77	7.78	91.24	0.197
6.80	6.82	65.26	0.236	7.78	7.80	96.31	0.197
6.82	6.84	71.60	0.197	7.80	7.81	98.21	0.197
6.84	6.85	94.41	0.157	7.81	7.83	82.37	0.276
6.85	6.87	110.25	0.157	7.83	7.84	82.37	0.197
6.87	6.88	76.67	0.197	7.84	7.86	69.70	0.197
6.88	6.90	84.27	0.236	7.86	7.88	80.47	0.197
6.90	6.91	64.63	0.236	7.88	7.89	107.71	0.197
6.91	6.93	81.73	0.157	7.89	7.91	97.57	0.157
6.93	6.94	108.98	0.236	7.91	7.92	86.80	0.157
6.94	6.96	107.71	0.157	7.92	7.94	108.35	0.157
6.96	6.97	68.43	0.197	7.94	7.95	95.67	0.197
6.97	6.99	84.27	0.236	7.95	7.97	94.41	0.236
6.99	7.01	147.63	0.236	7.97	7.98	72.86	0.276
7.01	7.02	79.83	0.197	7.98	8.00	69.70	0.276
7.02	7.04	75.40	0.197	8.00	8.02	84.27	0.236
7.04	7.05	74.13	0.197	8.02	8.03	93.77	0.197
7.05	7.07	81.10	0.197	8.03	8.05	72.23	0.236
7.07	7.08	72.86	0.276	8.05	8.06	96.94	0.197
7.08	7.10	63.99	0.236	8.06	8.08	124.82	0.197
7.10	7.11	87.44	0.197	8.08	8.09	93.77	0.197
7.11	7.13	115.32	0.157	8.09	8.11	89.34	0.197
7.13	7.15	193.25	0.197	8.11	8.12	136.22	0.276
7.15	7.16	79.83	0.197	8.12	8.14	119.75	0.197
7.16	7.18	82.37	0.276	8.14	8.16	167.90	0.197
7.18	7.19	83.64	0.276	8.16	8.17	115.95	0.197
7.19	7.21	78.57	0.157	8.17	8.19	100.74	0.236
7.21	7.22	138.76	0.236	8.19	8.20	131.79	0.236
7.22	7.24	77.93	0.197	8.20	8.22	83.00	0.197
7.24	7.25	80.47	0.236	8.22	8.23	106.44	0.157
7.25	7.27	92.51	0.197	8.23	8.25	138.76	0.197
7.27	7.29	78.57	0.315	8.25	8.26	114.68	0.197
7.29	7.30	86.80	0.197	8.26	8.28	109.61	0.236
7.30	7.32	60.83	0.157	8.28	8.30	82.37	0.236
7.32	7.33	147.63	0.197	8.30	8.31	108.98	0.197
7.33	7.35	111.51	0.236	8.31	8.33	176.77	0.157
7.35	7.36	114.05	0.197	8.33	8.34	172.34	0.118
7.36	7.38	90.60	0.197	8.34	8.36	223.03	0.236
7.38	7.39	65.89	0.197	8.36	8.37	242.67	0.315
7.39	7.41	87.44	0.197	8.37	8.39	311.73	0.197
7.41	7.43	77.30	0.157	8.42	8.44	1006.16	0.630
7.43	7.44	72.86	0.354	8.44	8.45	333.27	0.354
7.44	7.46	88.70	0.236	8.45	8.47	242.04	0.157
7.46	7.47	94.41	0.197	8.47	8.48	194.52	0.315
7.47	7.49	106.44	0.197	8.48	8.50	171.07	0.157
7.49	7.50	126.09	0.236	8.50	8.51	207.82	0.394
7.50	7.52	103.91	0.197	8.51	8.53	238.23	0.197
7.52	7.53	74.76	0.197				

Tudie 1 25, Then way +12 // 15 the und rear Date Date Date Date

Starting	Ending	IRI	Rut Depth	Starting	Ending	IRI	Rut Depth
Log Mile	Log Mile	(in/mi)	(inches)	Log Mile	Log Mile	(in/mi)	(inches)
7.61	7.63	66.53	0.236	8.68	8.70	193.88	0.236
7.63	7.64	195.15	0.236	8.70	8.71	219.23	0.354
7.64	7.66	75.40	0.236	8.71	8.73	155.23	0.315
7.66	7.67	91.24	0.197	8.73	8.75	105.18	0.276
7.67	7.69	60.83	0.315	8.75	8.76	121.02	0.236
7.69	7.71	84.90	0.197	8.76	8.78	135.59	0.394
7.71	7.72	84.27	0.157	8.78	8.79	76.67	0.315
7.72	7.74	127.35	0.236	8.79	8.81	122.92	0.236
7.74	7.75	97.57	0.315	8.81	8.82	100.74	0.236
7.75	7.77	86.80	0.276	8.82	8.84	102.01	0.236
7.77	7.78	68.43	0.315	8.84	8.85	105.18	0.354
7.78	7.80	93.14	0.394	8.85	8.87	111.51	0.276
7.80	7.81	94.41	0.157	8.87	8.89	95.04	0.236
7.81	7.83	111.51	0.276	8.89	8.90	99.48	0.197
7.83	7.84	78.57	0.315	8.90	8.92	110.88	0.197
7.84	7.86	105.81	0.354	8.92	8.93	117.22	0.276
7.86	7.88	89.34	0.236	8.93	8.95	96.94	0.315
/.88	7.89	140.00	0.276	8.95	8.96	88.70	0.354
7.89	7.91	107.71	0.276	8.96	8.98	101.38	0.394
7.91	7.92	/0.0/	0.315	8.98	8.99	110.25	0.433
7.92	7.94	67.80	0.236	8.99	9.01	115.95	0.276
7.94	7.95	09.70	0.137	9.01	9.03	137.49	0.315
7.95	7.97	122.23	0.230	9.03	9.04	338.98	0.433
7.97	7.98	133.09	0.230	9.04	9.00	122.92	0.433
8.00	8.00	74.70 99.70	0.315	9.00	9.07	120.30	0.313
8.00	8.02	100.11	0.315	9.07	9.09	318.07	0.230
8.02	8.05	60.83	0.157	9.05	9.10	701.40	0.276
8.05	8.05	102.01	0.236	9.15	9.17	268 65	0.276
8.06	8.08	81.10	0.276	9.18	9.20	251.54	0.315
8.08	8.09	86.17	0.276	9.20	9.20	226.20	0.354
8.09	8.11	96.94	0.197	9.21	9.23	154.60	0.236
8.11	8.12	74.13	0.197	9.23	9.24	103.91	0.236
8.12	8.14	122,28	0.276	9.24	9.26	82,37	0.236
8.14	8.16	89.34	0.236	9.26	9.27	95.04	0.197
8.16	8.17	98.84	0.197	9.27	9.29	70.33	0.157
8.17	8.19	91.24	0.197	9.29	9.31	101.38	0.276
8.19	8.20	100.74	0.315	9.31	9.32	87.44	0.236
8.20	8.22	102.01	0.157	9.32	9.34	122.92	0.197
8.22	8.23	96.31	0.197	9.34	9.35	72.86	0.315
8.23	8.25	91.24	0.236	9.35	9.37	117.22	0.276
8.25	8.26	122.92	0.157	9.37	9.38	116.58	0.236
8.26	8.28	117.85	0.157	9.38	9.40	98.21	0.315
8.28	8.30	125.45	0.157	9.40	9.41	74.76	0.315
8.30	8.31	108.98	0.197	9.41	9.43	65.89	0.276
8.31	8.33	167.27	0.236	9.43	9.44	80.47	0.276
8.33	8.34	108.98	0.236	9.44	9.46	98.84	0.354
8.34	8.36	222.39	0.236	9.46	9.48	93.77	0.276
8.45	8.47	640.57	0.354	9.48	9.49	198.32	0.354
8.47	8.48	316.80	0.354	9.49	9.51	84.27	0.394
8.48	8.50	297.79	0.197	9.51	9.52	85.64	0.472
8.50	8.51	255.80	0.276	9.52	9.54	84.90	0.433
8.51	8.53	201.04	0.197	9.54	9.55	118.48	0.197
0.3/	0.39	1040.07	0.276	9.33	9.3/	110.25	0.313
8.59	0.01 0.40	408.23	0.2/0	9.5/	9.38	109.01	0.394
0.01	0.02 0.24	245.51	0.313	9.38	9.00	08.01	0.472
0.02 8.64	8.04	347.01	0.472	9.00	9.02	70.21	0.394
8.65	8.03	212.24	0.334	9.02	9.03	162.70	0.394
0.0J 8.67	0.0/	212.20	0.270	9.03	9.03	102.20	0.4/2
0.07	0.00	2 T I. TU	U.17/				

Table G-1: Stripping Information

Hwy 82 #11Full-Depthsliightly stripped2Full-Depthat bottom3Full-Depth*5Stone Base*Hwy 82 #21Full-Depth2Full-Depthsevere2Full-Depthat bottom3Full-Depthat bottom3Full-Depthat bottom5Stone Baseat bottom5Stone Base*Hwy 79 #11Stone Base2Stone Base*3Stone Base*	Location	Boring #	Pavement Type	Stripping
2Full-Depthat bottom3Full-Depth*5Stone Base*Hwy 82 #21Full-Depth2Full-Depthat bottom3Full-Depthat bottom5Stone Baseat bottom5Stone Base*Hwy 79 #11Stone Base2Stone Base*3Stone Base*	Hwy 82 #1	1	Full-Depth	sliightly stripped
3Full-Depth*5Stone Base*Hwy 82 #21Full-Depthsevere2Full-Depthat bottom3Full-Depthat bottom5Stone Baseat bottomHwy 79 #11Stone Base*2Stone Base*3Stone Base*		2	Full-Depth	at bottom
5Stone Base*Hwy 82 #21Full-Depthsevere2Full-Depthat bottom3Full-Depthat bottom5Stone Baseat bottomHwy 79 #11Stone Base*2Stone Base*3Stone Base*		3	Full-Depth	*
Hwy 82 #21Full-Depthsevere2Full-Depthat bottom3Full-Depthat bottom5Stone Baseat bottomHwy 79 #11Stone Base*2Stone Base*3Stone Base*		5	Stone Base	*
2Full-Depthat bottom3Full-Depthat bottom5Stone Baseat bottomHwy 79 #11Stone Base*2Stone Base*3Stone Base*	Hwy 82 #2	1	Full-Depth	severe
3 Full-Depth at bottom 5 Stone Base at bottom Hwy 79 #1 1 Stone Base * 2 Stone Base * 3 Stone Base *		2	Full-Depth	at bottom
5 Stone Base at bottom Hwy 79 #1 1 Stone Base * 2 Stone Base * 3 Stone Base *		3	Full-Depth	at bottom
Hwy 79 #1 1 Stone Base * 2 Stone Base * 3 Stone Base *		5	Stone Base	at bottom
2 Stone Base * 3 Stone Base *	Hwy 79 #1	1	Stone Base	*
3 Stone Base *		2	Stone Base	*
		3	Stone Base	*
5 Stone Base *		5	Stone Base	*
Hwy 79 #2 1 Stone Base *	Hwy 79 #2	1	Stone Base	*
2 Stone Base *		2	Stone Base	*
3 Stone Base *		3	Stone Base	*
4 Stone Base *		4	Stone Base	*
5 Stone Base *		5	Stone Base	*
Hwy 49 #1 1 Stone Base none	Hwy 49 #1	1	Stone Base	none
2 Stone Base none		2	Stone Base	none
Hwy 49 #2 1 Full-Depth none	Hwy 49 #2	1	Full-Depth	none
2 Full-Depth none		2	Full-Depth	none
3 Stone Base none		3	Stone Base	none
4 Stone Base none		4	Stone Base	none
5 Full-Depth none		5	Full-Depth	none
6 Full-Depth none		6	Full-Depth	none
7 Full-Depth none		7	Full-Depth	none
8 Stone Base bottom 1.5"		8	Stone Base	bottom 1.5"
Hwy 270 #1 1 Stone Base none	Hwy 270 #1	1	Stone Base	none
2 Stone Base none		2	Stone Base	none
3 Stone Base bottom 1.5"		3	Stone Base	bottom 1.5"
4 Stone Base bottom 2"		4	Stone Base	bottom 2"
5 Stone Base at 2.5"		5	Stone Base	at 2.5"
6 Stone Base bottom 3"		6	Stone Base	bottom 3"
7 Stone Base bottom 3.5"		7	Stone Base	bottom 3.5"
8 Stone Base none		8	Stone Base	none
Hwy 270 #2 1 Full-Depth from 3" to 9"	Hwy 270 #2	2 1	Full-Depth	from 3" to 9"
2 Full-Depth none		2	Full-Depth	none
3 Full-Depth from 1.5" to 8" and bottom 4"		3	Full-Depth	from 1.5" to 8" and bottom 4"
4 Full-Depth from 1.5" to 9" and from 9" to 1		4	Full-Depth	from 1.5" to 9" and from 9" to 13"
5 Full-Depth from 5" to 15"		5	Full-Depth	from 5" to 15"
6 Full-Depth from 1.5" to 14.5"		6	Full-Depth	from 1.5" to 14.5"
7 Full-Depth throughout		7	Full-Depth	throughout

* Note: No adequate filed evaluation for stripping

Location	Boring #	Pavement Type	Stripping
Hwy 65 #1	1	Stone Base	none
	2	Stone Base	at bottom
	3	Stone Base	none
	4	Stone Base	none
	5	Stone Base	none
	6	Stone Base	bottom 1"
	7	Stone Base	none
	8	Stone Base	bottom 2.5"
Hwv 65 #2	1	Full-Depth	at 6.5" and 9.5"
	2	Full-Depth	at 6.5" and 10"
	3	Full-Depth	none
	4	Full-Depth	none
Hwy 65 #10	1	Full-Depth	none
	2	Full-Depth	none
	3	Full-Depth	bottom 0.5"
	4	Full-Depth	at bottom
	5	Full-Depth	at 8" and at bottom
	6	Stone Base	
Hway 65 #11	1	Stone Base	none
1100 y 05 #11	2	Stone Base	bottom 1"
	2	Stone Base	bottom 0.5"
	3	Stone Base	at 2" 10" and at bottom 0.5"
	4	Stone Base	at 5, 10, and at bottom 0.5
1 hun / 65 #10	5 1	Stone base	al 5.5
HWY 05 #12		Full-Depth	at 6" and at 10"
	2	Full-Depth	
	3	Full-Depth	
	4	Stone Base	from 7.5" to 9.5"
11 440 1440	5	Stone Base	at 6" and at bottom
HWy 412 #10	1	Stone Base	none
	2	Stone Base	none
	3	Stone Base	none
11 110 111	4	Stone Base	none
Hwy 412 #11	1	Stone Base	none
	2	Stone Base	none
	3	Stone Base	none
	4	Stone Base	none
Hwy 412 #12	1	Full-Depth	none
	2	Full-Depth	none
	3	Full-Depth	none
	4	Full-Depth	none
	5	Full-Depth	none
	6	Full-Depth	none
Hwy 412 #13	1	Full-Depth	at bottom
	2	Full-Depth	none
	3	Full-Depth	none
	4	Full-Depth	none
	5	Full-Depth	bottom 2.5"
Hwy 412 #14	1	Full-Depth	none
	2	Full-Depth	none
	3	Full-Depth	none
	4	Full-Depth	none
Hwy 412 #15	1	Full-Depth	none
_	2	Full-Depth	none
	3	Full-Depth	none

Table G-1 (Continued): Stripping Information

APPENDIX H

AVERAGE DAILY TRAFFIC DATA

ADT DATA	(from	1997	AHTD	database)	
----------	-------	------	------	-----------	--

Location	District #	County #	Douto	Section	Log Mile	0/ Trucks	AH	TD ADT	History
Location	District #	County #	Route	Section	Log Mile	% ITUCKS	Year	AADT	Fun.Class
							1986	2850	2
	7 14			4	11.03		1987	2440	2
							1988	2900	2
							1989		
		14	82				1990	3100	2
Umar 93 #1							1991		
ПWУ 02 #1							1992		
							1993	3430	2
							1994		
							1995	3800	2
							1996	4100	2
							1997	4300	2

* ADT are from station containing sampled location or as close as possible.

Logation	District #	County #		Section	Log Mile	% Trucks	AHTD ADT History		
Location	District #	County #	Koule	Section		70 TIUCKS	Year	AADT	Fun.Class
							1986	2850	2
			82	4	4 8.34		1987	2440	2
H 00 //0							1988	2900	2
	7 14						1989		
		14					1990	3100	2
							1991		
Hwy 82 #2							1992		
							1993	3430	2
							1994		
							1995	3800	2
							1996	4100	2
						1997	4300	2	

ADT DATA (from 1997 AHTD database)

* ADT are from station containing sampled location or as close as possible.

Location	District #	istrict # County #	Douto	Section	Log Mile	% Trucks	AHTD ADT History		
Location	District #	County #	Koule				Year	AADT	Fun.Class
							1986	2850	2
		7	7 79	5	5.64	16	1987	3000	2
							1988	3710	2
							1989		
							1990		
Hway 70 #1	7						1991	3720	2
пwy /9 #1							1992	3590	2
							1993		
							1994	3400	2
							1995	3900	2
							1996	4000	2
							1997	4000	2

ADT DATA (from 1997 AHTD database)

* ADT are from station containing sampled location or as close as possible.

Location	on District # County # Bouto Santia		Saction	I og Mile	% Trucks	AH	AHTD ADT History		
Location	District #	County #	Koule	Section	Log Mile	70 TIUCKS	Year	AADT	Fun.Class
							1986	2850	2
II							1987	3000	2
							1988	3710	2
		7 7			5.64		1989		
	7		79	5			1990		
						16	1991	3720	2
пwy /9 #2							1992	3590	2
							1993		
							1994	3400	2
							1995	3900	2
							1996	4000	2
							1997	4000	2

ADT DATA (from 1997 AHTD database)

* ADT are from station containing sampled location or as close as possible.

ADT DATA	(from	1997	AHTD	database))
----------	-------	------	------	-----------	---

Location	Location District # C	rigt # Country # I	Douto	Section	Log Mile	% Trucks	AHTD ADT History			
Location		County #	Route	Section		70 TIUCKS	Year	AADT	Fun.Class	
	10 28						1986	6000	2	
							1987	5960	2	
					23.51		1988	5590	2	
II			49	2			1989			
		28					1990	6040	2	
							1991			
пwy 49 #1							1992			
							1993	7840	2	
							1994			
							1995			
							1996	7900	2	
							1997	9200	2	

* ADT are from station containing sampled location or as close as possible.

	ADT DATA ((from)	1997 /	AHTD	database)
--	------------	---------	--------	------	-----------

Location	nation District # County #		Douto	Section	Log Mile	% Trucks	AHTD ADT History			
Location	District #	County #	Koule	Section	Log Mile	70 TIUCKS	Year	AADT	Fun.Class	
							1986	6100	2	
							1987	6110	2	
							1988	6000	2	
II	10 28			2			1989			
		28	49				1990	6160	2	
					20.21		1991			
пwy 49 #2					20.21		1992			
							1993	9490	2	
							1994			
							1995			
							1996	7700	2	
							1997	8000	2	

* ADT are from station containing sampled location or as close as possible.

ADT DATA	(from	1997	AHTD	database))
----------	-------	------	------	-----------	---

Location	District #	Country #	Douto	Section	ction Log Mile	0/ Tralia	AH	TD ADT	History
Location	District #	County #	Koule	Section		70 TIUCKS	Year	AADT	Fun.Class
							1986		
							1987	7360	2
H 270 #1					8.6		1988	6660	2
		26	270	6			1989		
							1990	8050	2
	6						1991		
пwy 270 #1							1992		
							1993		
							1994	12000	2
							1995	10000	2
							1996	11000	2
							1997	12000	2

* ADT are from station containing sampled location or as close as possible.

ADT DATA	(from	1997	AHTD	database)	ļ
----------	-------	------	------	-----------	---

Location	District #	Country #	+ Pouta Santio		action Log Mile	0/ Tralia	AH	TD ADT	History
Location	District #	County #	Koule	Section	Log Mile	70 TIUCKS	Year	AADT	Fun.Class
							1986		
	6 26						1987	10310	2
							1988	9020	2
U.v., 270 #2						1989			
					6.47		1990	9370	2
		26	270	6			1991	9320	2
пwy 270 #2		20	270	0			1992		
							1993		
							1994	11000	2
							1995		
							1996		
							1997		

* ADT are from station containing sampled location or as close as possible.

ADT DATA	(from	1997	AHTD	database)
----------	-------	------	------	-----------

Location	District #	# County #	Douto	Section	Log Mile	0/ Trata	AHTD ADT History			
Location		County #	Koule	Section		70 TIUCKS	Year	AADT	Fun.Class	
							1986			
							1987	16910	2	
					17.79		1988	16560	2	
II							1989	16390	2	
		23	65	9			1990			
	8					17	1991			
пwy 05 #1							1992	26360	2	
							1993			
							1994	15000	2	
							1995	19000	2	
							1996	18000	2	
							1997	19000	2	

* ADT are from station containing sampled location or as close as possible.

					_				
Loastion	District #	Country #	Douto	Section	Log Mile	0/ Trataka	AH	TD ADT	History
Location	District #	County #	Koule	Section	Log Mile	70 TIUCKS	Year	AADT	Fun.Class
							1986	9400	2
							1987		
							1988	14930	2
						1989	13610	2	
H (5 #2							1990		
	0 77	22	6		11 70	17	1991		
Hwy 65 #2	ð	23	05	9	11.79	17	1992	15020	2
							1993		
							1994		
						1995	17000	2	
							1996	19000	2
							1997		

* ADT are from station containing sampled location or as close as possible.

ADT DATA	(from	1997	AHTD	database)	
----------	-------	------	------	-----------	--

Location	District #	Country #	Douto	Saction	Log Mile	0/ Trata	AH	TD ADT	History
Location	District #	County #	Koule	Section	Log Mile	70 TIUCKS	Year	AADT	Fun.Class
							1986	9400	2
							1987		
							1988	14930	2
							1989	13610	2
	8 72						1990		
Umar 65 #10		65	0	11 70	17	1991			
Hwy 05 #10	0	23	05	9	11.79	17	1992	15020	2
							1993		
							1994		
							1995	17000	2
							1996	19000	2
							1997		

* ADT are from station containing sampled location or as close as possible.

ADT DATA	(from	1997	AHTD	database)	
----------	-------	------	------	-----------	--

Location	District # County #		Douto	Saction	Log Mile	0/ Tralia	AH	AHTD ADT History			
Location	District #	County #	Koule	Section	Log Mile	70 TIUCKS	Year	AADT	Fun.Class		
							1986	9400	2		
							1987				
							1988	14930	2		
							1989	13610	2		
	o 73						1990				
Umar 65 #11		65	0	12 75	17	1991					
пwy 05 #11	0	23	05	9	15.75	17	1992	15020	2		
							1993				
							1994				
							1995	17000	2		
							1996	19000	2		
							1997				

* ADT are from station containing sampled location or as close as possible.

Location	District # County # R		Douto	Santian	Log Mile	0/ Trucka	AHTD ADT History				
Location	District #	County #	Koule	Section	Section Log Mile 7	70 TIUCKS	Year	AADT	Fun.Class		
							1986				
							1987	16910	2		
							1988	16560	2		
							1989	16390	2		
							1990				
11	0	8 23	65		17.0	17	1991				
Пwy 05 #12	0		05	9		17	1992	26360	2		
							1993				
							1994	15000	2		
							1995	19000	2		
							1996	18000	2		
							1997	19000	2		

* ADT are from station containing sampled location or as close as possible.

Location	District #	County #	Douto	Saction	Log Mile	0/ Trucks	AH	TD ADT	History
Location	District #	County #	Route	Section	Log Mile	70 TIUCKS	Year	AADT	Fun.Class
							1986	4300	2
							1987	4190	2
	4 72						1988	4840	2
						1989			
						1990	6800	2	
		72	412	2			1 99 1		
Hwy 412 #10					0.95	17	1992	7290	2
							1993		
							1994	9000	2
								330	
							1995	(???)	2
							1996	12000	2
							1997		

* ADT are from station containing sampled location or as close as possible.

Logation	District #	County #	Douto	Saction	Section I og Mile % Trucks AHTD AD				
Location	District #	County #	Route	Section	Log Mile	70 TIUCKS	Year	AADT	Fun.Class
						1986	4300	2	
							1987	4190	2
							1988	4840	2
							1989		
	4 72					1990	6800	2	
				2			1 99 1		
Hwy 412 #11		72	412		2.08	17	1992	7290	2
							1993		
							1994	9000	2
								330	
							1995	(???)	2
							1996	12000	2
							1997		

* ADT are from station containing sampled location or as close as possible.

ADT DATA	(from	1997	AHTD	database))
----------	-------	------	------	-----------	---

Location	District #	rict # County # R		Santian	Log Mile	% Trucks	AH	AHTD ADT History			
Location	District #	County #	Koule	Section		70 TIUCKS	Year	AADT	Fun.Class		
							1986				
							1987	7930	2		
							1988	9640	2		
H 410 #10							1989				
							1990	6210	2		
	1 72	412	2	1.05	17	1991	8580	2			
ПWУ 412 #12	4	12	412		4.05	17	1992				
							1993				
							1994	8200	2		
							1995				
							1996	12000	2		
							1997	14000	2		

* ADT are from station containing sampled location or as close as possible.

ADT DATA	(from	1997	AHTD	database))
----------	-------	------	------	-----------	---

Location	District # Count		Douto	Saction	Log Mile	0/ Trata	AHTD ADT History			
Location	District #	County #	Koule	Section	Log Mile	70 TIUCKS	Year	AADT	Fun.Class	
							1986			
							1987	7930	2	
							1988	9640	2	
11 412 #12							1989			
	4 72	412	2	6.27		1990	12620	2		
					17	1991	11620	2		
пwy 412 #15	4	12	412		0.27	17	1992			
							1993			
							1994	12000	2	
							1995			
							1996	16000	2	
							1997	18000	2	

* ADT are from station containing sampled location or as close as possible.

ADT DATA	(from	1997	AHTD	database))
----------	-------	------	------	-----------	---

Location	District #	Country #	# Route Se	Saction	Log Mile	0/ Trata	AHTD ADT History		
Location	District #	County #	Koule	Section	Log wine	70 TIUCKS	Year	AADT	Fun.Class
							1986	11500	2
				2	7.55	17	1987		
							1988	11 790	2
		72	412				1989		
							1990	11620	2
Umm 412 #14							1991	13510	2
пwy 412 #14	4						1992		
							1993		
							1994	14000	2
							1995	17000	2
							1996	19000	2
							1997		

* ADT are from station containing sampled location or as close as possible.

ADT DATA	(from	1997	AHTD	database))
----------	-------	------	------	-----------	---

Location	District #	ct # County # Route	Section	Log Mile	% Trucks	AHTD ADT History			
Location	District #	County #	Route	Section	Log Mile	70 TIUCKS	Year	AADT	Fun.Class
							1986	11500	2
					8.63		1987		
						17	1988	11 790	2
		4 72	412	2			1989		
	4						1990	11620	2
Umar 112 #15							1991	13510	2
пwy 412 #15	4						1992		
							1993		
							1994	25000	14
							1995	22000	14
							1996	29000	14
							1997	24000	14

* ADT are from station containing sampled location or as close as possible.

APPENDIX I

EXPECTED PSI AND

EQUIVALENT SINGLE AXLE LOAD CALCULATIONS

Location	Job Number	Year Built	ESAL's Experienced as of 1997	Expected ESAL's as of 1999	SN**	β	log p	$log((4.2-Expected PSI)/(4.2-1.5)) = (log W - log \rho)* \beta$	Expected PSI
Hwy 82 #1	R70050	1990	534944	687785	5.5	0.4660	7.4136	-0.734573602	3.70
Hwy 82 #2	R70051	1990	534944	687785	5.5	0.4660	7.4136	-0.734573602	3.70
Hwy 79 #1 & #2	R70016	1 99 1	591738	788984	5.23	0.4823	7.2412	-0.648281238	3.59
Hwy 49 #1	R00081	1999	576700	807380	4.2	0.6103	6.5066	-0.365853939	3.04
Hwy 49 #2	R00071	1999	508080	762120	5.5	0.4660	7.4136	-0.713801677	3.68
Hwy 270 #1	60116	1984	2115540	2441008	4.25	0.6001	6.5455	-0.094749995	2.03
Hwy 270 #2	60115	1981	1971000	2217375	5.3	0.4777	7.2866	-0.44937696	3.24
Hwy 65 #1	8827	1987	1979614	2375537	4.42	0.5696	6.6750	-0.170445428	2.38
Hwy 65 #2 & #10	R80010	1988	2360820	2885447	5.6	0.4610	7.4757	-0.468153882	3.28
Hwy 65 #11	R80011	1988	2360820	2885447	5.66	0.4582	7.5125	-0.48216763	3.31
Hwy 65 #12	8827	1987	1979614	2375537	4.42	0.5696	6.6750	-0.170445428	2.38
Hwy 412 #10	1675	1994	747520	1245867	5.28	0.4790	7.2737	-0.564319953	3.46
Hwy 412 #11	1675	1994	747520	1245867	5.28	0.4790	7.2737	-0.564319953	3.46
Hwy 412 #12	40112	1994	961848	1603080	6.1	0.4418	7.7725	-0.692510197	3.65
Hwy 412 #13	40112	1994	1061128	1768547	6.5	0.4314	7.9953	-0.754015163	3.72
Hwy 412 #14	R40016	1987	3136518	3763822	5.3	0.4777	7.2866	-0.339612038	2.96

Table I-1: Expected PSI Based on AASHTO Performance Equations

* Note: Since the ADT counts were only known through 1997, straight-line interpolation was used to determine the ESAL's through 1999. ** Note: SN obtained from either AHTD design records or calculated based on borings.

Location			Actual Counts for 1997					
Location	% Trucks	Year	ADT	Year	ADT	ESAL's*	ADT	ESAL's*
Hwy 82 #1 & #2	15.33	1989	2760	2009	4100	452	4200	458
Hwy 79 #1 & #2	16.79	1990	3930	2010	5955	713	4100	579
Hwy 49 #1	11	1992	7525	2012	11750	911	9200	790
Hwy 49 #2	11	1993	10000	2013	15700	1215	8400	870
Hwy 270 #1	12	1982	6650	2002	10400	879	12100	966
Hwy 270 #2	8.8	1979	8940	1999	18560	1040	10900	750
Hwy 65 #1 & #12	8	1984	11320	2004	19600	1064	19000	1043
Hwy 65 #2, #10, & #1	11	1986	11095	2006	19600	1451	20000	1470
Hwy 412 #10 & #11	19	1993	7195	2013	12225	1584	8500	1280
Hwy 412 #12	19	1993	8950	2013	14040	1732	13000	1647
Hwy 412 #13	16	1993	8950	2013	14040	1579	17500	1817
Hwy 412 #14	16	1986	10425	2006	18035	1955	18000	1953

Table I-2: Summary of ESAL's Experienced

* These are 24 hr ESAL's

		Actual	Percent of	
Location	Design	ESAL's*	Design	Percent of
	ESAL's**	*	Life	Design ESAL's
Hwy 82 #1 & #2	1319840	534944	40	40.53097345
Hwy 79 #1 & #2	2081960	591738	35	28.42215989
Hwy 49 #1	2660120	576700	25	21.67947311
Hwy 49 #2	3547800	508080	20	14.32098765
Hwy 270 #1	2566680	2115540	75	82.42320819
Hwy 270 #2	3036800	1971000	90	64.90384615
Hwy 65 #1 & #12	3106880	1979614	65	63.71710526
Hwy 65 #2, #10, & #1	4236920	2360820	55	55.72019297
Hwy 412 #10 & #11	4625280	747520	20	16.16161616
Hwy 412 #12	5057440	961848	20	19.01847575
Hwy 412 #13	4610680	1061128	20	23.01456618
Hwy 412 #14	5708600	3136518	55	54.94373402

** ESAL's = (24 hr ESAL's)(0.5)(0.8 if 2 lanes in that direction)(years)(365)

	%	TOTAL	PASSENGER	COMMERCIAL
	TRUCKS	VEHICLES	VEHICLES	VEHICLES
1989 ADT	15.33	2760	2337	423
2009 ADT	15.33	4100	3471	629
AVERAGE ADT	15.33	3430	2904	526
DHV	11.1909	451		
DD = .60	F-FACTOR =	3.683	SN = 4 SI=2	2.50

Design Data Hwy 82 #1 & #2

JOB NUMBER: JOB TITLE: LOCATION:

TANDEM AXLES

WEIGHT GROUP	# OF AXLES 	18K EQ 		WEIGHT GROUP	# OF AXLES	18K EQ
UNDER 2,000	78	0.02		UNDER 2,000	2	0.00
2,001-4,000	331	0.99		2,001- 4,000	9	0.00
4,001- 6,000	111	1.44		4,000- 6,000	11	0.01
6,001- 8,000	74	3.02		6,001- 8,000	17	0.07
8,001-10,000	107	10.87		8,001-10,000	28	0.25
10,001-12,000	99	21.16		10,001-12,000	40	0.72
12,001-14,000	52	20.32		12,001-14,000	44	1.46
14,001-16,000	25	16.05		14,001-16,000	38	2.16
16,001-18,000	13	12.57		16,001-18,000	28	2.54
18,001-20,000	8	11.04		18,001-20,000	24	3.39
20,001-22,000	4	7.37		20,001-22,000	21	4.34
22,001-24,000	2	5.75		22,001-24,000	19	5.59
24,001-26,000	1	3.89		24,001-26,000	22	9.00
26,001-28,000	1	2.83		26,001-28,000	27	14.44
28,001-30,000	0	1.85		28,001-30,000	31	21.52
30,001-32,000	0	1.59		30,001-32,000	34	30.12
32,001-34,000	0	1.02		32,001-34,000	30	33.57
34,001-36,000	0	1.30		34,001-36,000	25	34.54
36,001-38,000	0	0.00		36,001-38,000	18	29.74
38,001-40,000	0	0.00		38,001-40,000	14	28.39
				40,001-42,000	11	25.96
				42,001-46,000	8	23.19
				46,001-48,000	5	18.60
				48,001-50,000	3	12.12
				50,001-52,000	2	8.62
				52,001-54,000	1	7.77
				54,001-56,000	1	5.46
				56,001-58,000	0	2.60
				58,001-60,000	0	1.69
TOTALS	904	123.07		TOTALS	516	327.88
S/A 18K EAL= TOTAL 18K EAL= WORKED BY:	123	452	T/A 18K =	328	AUTO 18K =	1

	%	TOTAL	PASSENGER	COMMERCIAL
	TRUCKS	VEHICLES	VEHICLES	VEHICLES
1989 ADT	15.33	2760	2337	423
1997 ADT	15.33	4200	3556	644
AVERAGE ADT	15.33	3480	2947	533
DHV	11.1909	462		
DD = .60	F-FACTOR =	3.683	SN = 4 SI= 2.50)

S

TANDEM AXLES

COUNTY:

S	IN	GL	-E	AU	Œ	E٤

Actual Data Hwy 82 #1 & #2

JOB NUMBER: JOB TITLE: LOCATION:

	<i>m</i> O				#05	
WEIGHT GROUP	AXLES	18K EQ		WEIGHT GROUP	AXLES	18K EQ
UNDER 2,000	79	0.02		UNDER 2,000	2	0.00
2,001- 4,000	336	1.01		2,001- 4,000	10	0.00
4,001- 6,000	113	1.46		4,000- 6,000	12	0.01
6,001- 8,000	75	3.06		6,001- 8,000	18	0.07
8,001-10,000	108	11.03		8,001-10,000	29	0.26
10,001-12,000	101	21.46		10,001-12,000	41	0.73
12,001-14,000	53	20.62		12,001-14,000	45	1.49
14,001-16,000	25	16.28		14,001-16,000	38	2.19
16,001-18,000	13	12.76		16,001-18,000	28	2.58
18,001-20,000	8	11.20		18,001-20,000	24	3.44
20,001-22,000	4	7.48		20,001-22,000	21	4.40
22,001-24,000	2	5.84		22,001-24,000	19	5.67
24,001-26,000	1	3.95		24,001-26,000	23	9.13
26,001-28,000	1	2.87		26,001-28,000	27	14.65
28,001-30,000	0	1.87		28,001-30,000	31	21.84
30,001-32,000	0	1.62		30,001-32,000	34	30.56
32,001-34,000	0	1.04		32,001-34,000	31	34.06
34,001-36,000	0	1.32		34,001-36,000	25	35.05
36,001-38,000	0	0.00		36,001-38,000	18	30.17
38,001-40,000	0	0.00		38,001-40,000	14	28.81
				40,001-42,000	11	26.34
				42,001-46,000	8	23.53
				46,001-48,000	6	18.87
				48,001-50,000	3	12.30
				50,001-52,000	2	8.75
				52,001-54,000	1	7.89
				54,001-56,000	1	5.54
				56,001-58,000	0	2.64
				58,001-60,000	0	1.72
TOTALS	918	124.87		TOTALS	523	332.66
S/A 18K EAL= TOTAL 18K EAL=	125	458	T/A 18K =	333	AUTO 18K =	1

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES		COMMERCIAL VEHICLES
1990 ADT 2010 ADT AVERAGE ADT		16.79 16.79 16.79		3930 5955 4943		3270 4955 4113		660 1000 830
DHV		12.2567		655				
DD = .60		F-FACTOR =	3.683		SN	= 4	SI= 2.50	
SING	LE AXLES					TANDEM AXLES	i	
	#OF	19K EO		10		# OF	19K EO	
				vv		AALES		
UNDER 2,000	123	0.02			UNDER 2,000	3	0.00	
4,001- 4,000	175	2.28			4,000- 6,000	18	0.00	
6,001- 8,000	116	4.76			6,001- 8,000	27	0.11	
8,001-10,000	168	17.15			8,001-10,000	44	0.40	
10,001-12,000	157	33.39			10,001-12,000	63	1.14	
12,001-14,000	83	32.07			12,001-14,000	70	2.31	
14,001-16,000	39	25.32			14,001-16,000	60	3.40	
16,001-18,000	20	19.84			16,001-18,000	44	4.01	
20 001-20,000	12	17.42			20.001-20,000	30	5.35	
22,001-24,000	3	9.08			22,001-22,000	30	8.82	
24.001-26.000	2	6.14			24.001-26.000	35	14.21	
26.001-28.000	1	4.46			26.001-28.000	43	22.79	
28,001-30,000	0	2.91			28,001-30,000	49	33.97	
30,001-32,000	0	2.51			30,001-32,000	54	47.54	
32,001-34,000	0	1.61			32,001-34,000	48	52.98	
34,001-36,000	0	2.06			34,001-36,000	40	54.52	
36,001-38,000	0	0.00			36,001-38,000	28	46.94	
38,001-40,000	0	0.00			38,001-40,000	22	44.81	
					40,001-42,000	17	40.97	
					42,001-46,000	13	36.59	
					40,001-40,000	9	29.30	
					40,001-50,000	5	13.13	
					52,001-52,000	3	12.01	
					54 001-56 000		8.61	
					56 001-58 000	1	4 11	
					58,001-60,000	o	2.67	
TOTALS	1427	194.24			TOTALS	814	517.47	
S/A 18K EAL= TOTAL 18K EAL=	194	713	T/A 18K =	517		AUTO 18K =	1	

Design Data Hwy 79 #1 & #2

COUNTY:

JOB NUMBER: JOB TITLE: LOCATION:

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES		COMMERCIAL VEHICLES
1990 ADT 1997 ADT AVERAGE ADT		16.79 16.79 16.79		3930 4100 4015		3270 3412 3341		660 688 674
DHV		12.2567		451				
DD = .60		F-FACTOR =	3.683		SN	= 4	SI= 2.50	
SING	LE AXLES					TANDEM AXLES	i	
WEIGHT GROUP	# OF AXLES 	18K EQ 		w	EIGHT GROUP	# OF AXLES 	18K EQ	
UNDER 2,000 2,001-4,000 4,001-6,000 8,001-8,000 10,001-10,000 12,001-14,000 14,001-16,000 16,001-18,000 20,001-22,000 22,001-24,000 24,001-26,000 24,001-26,000 28,001-30,000 30,001-32,000 34,001-36,000 36,001-38,000 38,001-40,000	100 425 142 94 137 127 67 32 16 10 5 3 1 1 0 0 0 0 0 0	0.02 1.27 1.85 3.87 13.93 27.12 26.05 20.57 16.12 14.15 9.45 7.37 4.99 3.63 2.37 2.04 1.31 1.67 0.00 0.00			UNDER 2,000 2,001-4,000 4,000-6,000 6,001-8,000 10,001-12,000 12,001-14,000 14,001-16,000 20,001-22,000 20,001-22,000 24,001-26,000 26,001-28,000 32,001-34,000 34,001-36,000 36,001-38,000 36,001-38,000 40,001-46,000 40,001-46,000 40,001-46,000 50,001-50,000 52,001-54,000	3 12 15 22 36 51 57 48 35 29 35 29 35 40 44 39 22 35 40 44 10 7 4 22 23	$\begin{array}{c} 0.00\\ 0.00\\ 0.01\\ 0.99\\ 0.33\\ 0.92\\ 1.88\\ 2.76\\ 3.26\\ 4.35\\ 5.56\\ 7.17\\ 11.54\\ 18.51\\ 27.59\\ 38.62\\ 43.04\\ 44.28\\ 38.13\\ 36.40\\ 33.28\\ 29.73\\ 23.85\\ 15.54\\ 11.05\\ 9.97\\ 7.00\\ \end{array}$	
TOTALS	1160	157.79			58,001-60,000 TOTALS	0 661	2.17 420.36	
S/A 18K EAL= TOTAL 18K EAL= WORKED BY:	158	579	T/A 18K =	420		AUTO 18K =	1	

JOB NUMBER: JOB TITLE: LOCATION:

Actual Design Hwy 79 #1 & #2

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES		
1992 ADT		11		7525		6697	•	
2012 ADT		11		11750		10458		1:
AVERAGE ADT		11		9638		8577		1
DHV		8.03		1293				
DD = .60	F	-FACTOR =	3.683		SN	í = 4	SI= 2.50	
SING	LE AXLES					TANDEM AXLES	<u>3</u>	
	#OF					# OF	:	
WEIGHT GROUP	AXLES	18K EQ		w	EIGHT GROUP	AXLES	18K EQ	
UNDER 2,000	157	0.03			UNDER 2,000	4	0.00	
2,001- 4,000	668	2.00			2,001- 4,000	19	0.01	
4,001- 6,000	224	2.91			4,000- 6,000	23	0.02	
6,001- 8,000	148	6.08			6,001- 8,000	35	0.14	
8,001-10,000	215	21.91			8,001-10,000	57	0.51	
10,001-12,000	200	42.65			10,001-12,000	81	1.45	
12,001-14,000	106	40.97			12,001-14,000	89	2.95	
14,001-16,000	50	32.35			14,001-16,000	76	4.35	
16,001-18,000	25	25.35			16,001-18,000	56	5.12	
18,001-20,000	15	22.25			18,001-20,000	48	6.84	
20,001-22,000	7	14.87			20,001-22,000	42	8.74	
22,001-24,000	4	11.60			22,001-24,000	39	11.27	
24,001-26,000	2	7.84			24,001-26,000	45	18.15	
26,001-28,000	1	5.70			26,001-28,000	55	29.12	
28,001-30,000	1	3.72			28,001-30,000	62	43.39	
30,001-32,000	0	3.21			30,001-32,000	68	60.73	
32,001-34,000	0	2.06			32,001-34,000	61	67.68	
34,001-36,000	0	2.63			34,001-36,000	50	69.64	
36,001-38,000	0	0.00			36,001-38,000	36	59.96	
38,001-40,000	0	0.00			38,001-40,000	28	57.24	
					40,001-42,000	22	52.34	
					42,001-46,000	16	46.75	
					46,001-48,000	11	37.50	
					48,001-50,000	6	24.43	
					50,001-52,000	4	17.38	
					52,001-54,000	3	15.67	
					54,001-56,000	2	11.00	
					56,001-58,000	1	5.24	
					58,001-60,000	0	3.41	
TOTALS	1824	248.14			TOTALS	1040	661.06	
S/A 18K EAL= TOTAL 18K EAL=	248	911	T/A 18K =	661		AUTO 18K =	2	

CIAL S 828 1293 1060

JOB NUMBER: JOB TITLE: LOCATION: Design Data Hwy 49 #1

COUNTY:

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES	_	COMMERCIAL VEHICLES
1992 ADT		11		7525		6697	,	828
1997 ADT		11		9200		8188		1012
AVERAGE ADT		11		8363		7443	ł	920
DHV		8.03		1012				
DD = .60		F-FACTOR =	3.683		SI	I = 4	SI= 2.50	
SING	LE AXLES					TANDEM AXLE	<u>S</u>	
	#OF					# O	=	
WEIGHT GROUP	AXLES	18K EQ		w	EIGHT GROUP	AXLE	5 18K EQ	
						·		
UNDER 2,000	136	0.03			UNDER 2,000	4	0.00	
2,001- 4,000	580	1.74			2,001- 4,000	16	0.00	
4,001-6,000	194	2.52			4,000- 6,000	20	0.02	
6,001-8,000	129	5.27			6,001- 8,000	30	0.12	
8,001-10,000	186	19.01			8,001-10,000	49	0.44	
10,001-12,000	1/4	37.01			10,001-12,000	70	1.26	
12,001-14,000	92	35.55			12,001-14,000	/8	2.56	
14,001-16,000	44	28.07			14,001-16,000	66	3.77	
16,001-18,000	22	22.00			16,001-18,000	48	4.44	
18,001-20,000	13	19.31			18,001-20,000	42	5.93	
20,001-22,000	0	12.90			20,001-22,000	3/	7.59	
22,001-24,000	3	10.06			22,001-24,000	33	9.78	
24,001-20,000	2	0.01			24,001-20,000	38	05.00	
20,001-20,000		4.90			20,001-20,000	4/ 5/	20.20	
20,001-30,000	0	3.23			20,001-30,000	50	57.00	
30,001-32,000	0	2.79			30,001-32,000	000	52.70	
32,001-34,000	0	1.79			32,001-34,000	03	60.73	
34,001-30,000	0	2.20			34,001-30,000	44	52.02	
30,001-30,000	0	0.00			29 001 40 000	31	52.03 40.67	
38,001-40,000	U	0.00			40 001 42 000	24	49.07	
					40,001-42,000	14	40.56	
					46 001 49 000	10	22.54	
					48 001-50 000		21 20	
					50 001-50,000		15.08	
					52 001-54 000		13.60	
					54,001-56,000		0.55	
					56 001-58 000	1	4 55	
					58,001-60,000	0	2.96	
TOTALS	1582	215.31			TOTALS	902	573.61	
S/A 18K EAL= TOTAL 18K EAL= WORKED BY:	215	790	T/A 18K =	574		AUTO 18K =	1	

JOB NUMBER: JOB TITLE: Actual Data LOCATION: Hwy 49 #1

		% TRUCKS		TOTAL VEHICLES		PASSENGE VEHICLES	२	COMMERCIAL VEHICLES
1993 ADT 2013 ADT AVERAGE ADT		11 11 11		10000 15700 12850		890 1397 1143	00 73 37	1100 1727 1414
DHV		8.03		1727				
DD = .60		F-FACTOR =	3.683	3	SI	I = 4	SI= 2.50	
SING	LE AXLES					TANDEM AXL	<u>ES</u>	
WEIGHT GROUP	# OF AXLES 	18K EQ 		w	/EIGHT GROUP	# AXL -	DF ES 18K EQ	
UNDER 2,000 2,001-4,000 4,001-6,000 6,001-8,000 10,001-12,000 12,001-14,000 14,001-16,000 20,001-22,000 22,001-24,000 24,001-26,000 26,001-28,000 28,001-30,000 30,001-32,000 32,001-34,000 36,001-38,000 38,001-40,000	209 890 298 198 286 267 141 67 34 20 9 5 3 1 1 1 0 0 0 0	0.04 2.67 3.88 8.11 29.22 56.87 54.63 43.13 33.80 29.67 19.82 15.46 10.46 7.60 4.96 4.28 2.75 3.50 0.00 0.00			UNDER 2,000 2,001-4,000 4,000-6,000 8,001-10,000 10,001-12,000 14,001-16,000 14,001-16,000 18,001-20,000 22,001-22,000 22,001-24,000 24,001-26,000 24,001-26,000 24,001-26,000 30,001-32,000 30,001-34,000 34,001-36,000 36,001-38,000 36,001-48,000 40,001-42,000 40,001-52,000 50,001-52,000 50,001-54,000 56,001-58,000		6 0.00 25 0.01 31 0.03 46 0.19 76 0.68 08 1.94 19 3.94 02 5.80 35 9.12 36 11.66 51 15.03 30 24.20 73 38.82 33 57.85 34 90.24 37 92.86 18 79.95 38 76.32 29 69.79 22 62.33 15 50.00 8 32.58 5 23.17 4 20.90 2 14.67	
TOTALS	2431	330.85			58,001-60,000 TOTALS	138	1 4.55 37 881.41	
S/A 18K EAL= TOTAL 18K EAL= WORKED BY:	331	1215	T/A 18K =	881		AUTO 18K =	2	

JOB NUMBER: JOB TITLE: Desig LOCATION: Hwy

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES		COMMERCIAL VEHICLES
1993 ADT	-	11		10000		8900		1100
1997 ADT		11		8400		7476		924
AVERAGE ADT		11		9200		8188		1012
DHV		8.03		924				
DD = .60		F-FACTOR =	3.683		SN	i = 4	SI= 2.50	
SING	LE AXLES					TANDEM AXLES	<u>)</u>	
	#OF					# OF		
WEIGHT GROUP	AXLES	18K EQ		w	EIGHT GROUP	AXLES	18K EQ	
UNDER 2,000	150	0.03			UNDER 2,000	4	0.00	
2,001- 4,000	638	1.91			2,001- 4,000	18	0.01	
4,001- 6,000	214	2.78			4,000- 6,000	22	0.02	
6,001- 8,000	142	5.80			6,001- 8,000	33	0.13	
8,001-10,000	205	20.92			8,001-10,000	54	0.49	
10,001-12,000	191	40.72			10,001-12,000	//	1.39	
12,001-14,000	101	39.11			12,001-14,000	50 72	2.82	
16,001-18,000	40	24.20			16,001-18,000	73	4.15	
18,001-20,000	24	24.20			18 001-20 000	46	4.05	
20 001-22 000	7	14 19			20 001-22 000	40	8 35	
22,001-24,000	4	11.07			22 001-24 000	37	10.76	
24.001-26.000	2	7.49			24.001-26.000	43	17.33	
26.001-28.000	1	5.44			26.001-28.000	52	27.79	
28.001-30.000	1	3.55			28.001-30.000	60	41.42	
30,001-32,000	0	3.06			30,001-32,000	65	57.97	
32,001-34,000	0	1.97			32,001-34,000	58	64.61	
34,001-36,000	0	2.51			34,001-36,000	48	66.48	
36,001-38,000	0	0.00			36,001-38,000	34	57.24	
38,001-40,000	0	0.00			38,001-40,000	27	54.64	
					40,001-42,000	21	49.96	
					42,001-46,000	15	44.63	
					46,001-48,000	11	35.80	
					48,001-50,000	6	23.32	
					50,001-52,000	4	16.59	
					52,001-54,000	3	14.96	
					54,001-56,000	2	10.50	
					58,001-60,000	0	3.26	
TOTALS	1741	236.87			TOTALS	993	631.05	
S/A 18K EAL= TOTAL 18K EAL= WORKED BY:	237	870	T/A 18K =	631		AUTO 18K =	2	

JOB NUMBER: JOB TITLE: LOCATION: Actual Data Hwy 49 #2

		% TRUCKS		TOTAL VEHICLES		PASSENGI VEHICLE	ER S		COMMERCIAL VEHICLES
1982 ADT 2002 ADT AVERAGE ADT		12 12 12		6650 10400 8525		51 9' 7!	852 152 502		798 1248 1023
DHV		8.76		1144					
DD = .60		F-FACTOR =	3.683	3	SI	I = 4	1	SI= 2.50	
SING	LE AXLES					TANDEM AX	<u>LES</u>		
WEIGHT GROUP	# OF AXLES 	18K EQ		w	/EIGHT GROUP	# AX	⊧OF LES	18K EQ	
UNDER 2,000 2,001-4,000 4,001-6,000 8,001-8,000 10,001-12,000 12,001-14,000 14,001-16,000 20,001-22,000 22,001-24,000 24,001-26,000 26,001-28,000 28,001-30,000 30,001-32,000 34,001-36,000 36,001-38,000 38,001-40,000	151 644 216 143 207 193 102 48 24 15 7 4 2 1 1 1 0 0 0 0	0.03 1.93 2.81 5.87 21.15 41.16 39.54 31.22 24.46 21.47 14.34 11.19 7.57 5.50 3.59 3.10 1.99 2.53 0.00 0.00			UNDER 2,000 2,001-4,000 6,001-8,000 8,001-10,000 11,001-12,000 14,001-16,000 14,001-18,000 22,001-22,000 22,001-24,000 24,001-26,000 24,001-26,000 24,001-26,000 30,001-32,000 30,001-32,000 30,001-34,000 36,001-38,000 38,001-48,000 40,001-48,000 40,001-52,000 50,001-52,000 50,001-54,000 54,001-54,000		4 18 2 34 55 78 66 74 41 374 53 60 66 59 99 43 27 11 6 4 3 2 1	0.00 0.01 0.02 0.13 0.49 1.40 2.85 4.20 4.94 6.60 8.44 10.88 17.51 28.10 41.87 58.60 65.31 67.20 57.86 55.24 50.51 45.11 36.19 23.58 16.77 15.13 10.62 5.06	
TOTALS	1760	239.45			58,001-60,000 TOTALS	1	0 003	3.29 637.91	
S/A 18K EAL= TOTAL 18K EAL= WORKED BY:	239	879	T/A 18K =	638		AUTO 18K =		2	

. Design Data Hwy 270 #1 COUNTY:

JOB NUMBER: JOB TITLE: De LOCATION: Hw

JUUNIN

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES		COMMERCIAL VEHICLES
1982 ADT 1997 ADT AVERAGE ADT		12 12 12 12		6650 12100 9375		5852 10648 8250		798 1452 1125
DHV		8.76		1331				
DD = .60		F-FACTOR =	3.683	3	SN	I = 4	SI= 2.50	
SING	LE AXLES					TANDEM AXLES	<u>5</u>	
WEIGHT GROUP	# OF AXLES	18K EQ		v	/EIGHT GROUP	# OF AXLES	18K EQ	
		0.03			UNDER 2,000	5	0.00	
2,001- 4,000	709	2.13			2,001- 4,000	20	0.01	
4,001- 6,000	237	3.09			4,000- 6,000	24	0.02	
6,001- 8,000	157	6.45			6,001- 8,000	37	0.15	
8,001-10,000	228	23.25			8,001-10,000	60	0.54	
10,001-12,000	213	45.26			10,001-12,000	86	1.54	
12,001-14,000	112	43.48			12,001-14,000	95	3.13	
14,001-16,000	53	34.33			14,001-16,000	81	4.61	
16,001-18,000	27	26.90			16,001-18,000	59	5.43	
18,001-20,000	16	23.61			18,001-20,000	51	7.26	
20,001-22,000	8	15.78			20,001-22,000	45	9.28	
22,001-24,000	4	12.31			22,001-24,000	41	11.96	
24,001-26,000	2	8.32			24,001-26,000	48	19.26	
26,001-28,000	1	6.05			26,001-28,000	58	30.90	
28,001-30,000	1	3.95			28,001-30,000	66	46.05	
30,001-32,000	0	3.41			30,001-32,000	/3	64.45	
32,001-34,000	0	2.19			32,001-34,000	60	71.82	
34,001-36,000	0	2.79			34,001-36,000	54	73.90	
36,001-38,000	0	0.00			30,001-30,000	30	03.03	
38,001-40,000	U	0.00			40 001 42 000	30	55.54	
					40,001-42,000	17	49.61	
					46 001-48 000	12	30.80	
					48 001-50 000	7	25.00	
					50 001-52 000	4	18.44	
					52 001-54 000	3	16.63	
					54 001-56 000	2	11.68	
					56.001-58.000	1	5.57	
					58,001-60,000	Ö	3.62	
TOTALS	1935	263.32			TOTALS	1104	701.52	
S/A 18K EAL= TOTAL 18K EAL=	263	966	T/A 18K =	702		AUTO 18K =	2	

JOB NUMBER: JOB TITLE: LOCATION: Actual Data Hwy 270 #1

COUNTY:

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES	_	COMMERCIAL VEHICLES
1979 ADT		8.8		8940		8153		787
1999 ADT AVERAGE ADT		8.8 8.8		18560 13750		16927 12540		1633 1210
DHV		6.424		2042				
		••••						
DD = .60		F-FACTOR =	3.683		SN	í = 4	SI= 2.50	
SING	LE AXLES					TANDEM AXLES	5	
	#OF					#OF	:	
WEIGHT GROUP	AXLES	18K EQ		W	EIGHT GROUP	AXLES	18K EQ	
UNDER 2,000	179	0.04			UNDER 2,000	5	0.00	
2,001- 4,000	762	2.29			2,001- 4,000	22	0.01	
4,001-6,000	255	3.32			4,000- 6,000	26	0.03	
6,001-8,000	169	6.94			6,001-8,000	40	0.16	
8,001-10,000	245	25.01			8,001-10,000	00	0.56	
12 001-12,000	121	40.00			12 001-12,000	92 102	3.37	
14 001-16 000	57	36.92			14 001-16 000	87	4.96	
16.001-18.000	29	28.93			16.001-18.000	64	5.85	
18.001-20.000	17	25.40			18.001-20.000	55	7.80	
20,001-22,000	8	16.97			20,001-22,000	48	9.98	
22,001-24,000	5	13.23			22,001-24,000	44	12.87	
24,001-26,000	2	8.95			24,001-26,000	52	20.72	
26,001-28,000	1	6.51			26,001-28,000	62	33.23	
28,001-30,000	1	4.25			28,001-30,000	71	49.52	
30,001-32,000	0	3.66			30,001-32,000	78	69.32	
32,001-34,000	0	2.35			32,001-34,000	70	77.25	
34,001-36,000	0	3.00			34,001-36,000	58	79.49	
36,001-38,000	0	0.00			36,001-38,000	41	68.44	
38,001-40,000	U	0.00			38,001-40,000	32	65.34 50.74	
					40,001-42,000	25	59.74	
					42,001-40,000	19	42.80	
					48 001-50 000	7	27.89	
					50.001-52.000	4	19.84	
					52.001-54.000	3	17.89	
					54,001-56,000	2	12.56	
					56,001-58,000	1	5.99	
					58,001-60,000	0	3.90	
TOTALS	2081	283.22			TOTALS	1187	754.52	
S/A 18K EAL= TOTAL 18K EAL= WORKED BY:	283	1040	T/A 18K =	755		AUTO 18K =	3	

Design Data Hwy 270 #2

COUNTY:

JOB NUMBER: JOB TITLE: LOCATION:

	_	% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES	_	COMMERCIAL VEHICLES
1979 ADT		8.8		8940		8153		787
1997 ADT		8.8		10900		9941		959
AVERAGE ADT		8.8		9920		9047		873
DHV		6.424		1199				
DD = .60		F-FACTOR =	3.683	3	SI	I = 4	SI= 2.50	
SINGL	E AXLES					TANDEM AXLES	<u>8</u>	
	#OF					# OF		
WEIGHT GROUP	AXLES	18K EQ		w	EIGHT GROUP	AXLES	18K EQ	
UNDER 2000	129	0.03				4	0.00	
2 001- 4 000	550	1.65			2 001- 4 000	- 16	0.00	
4.001- 6.000	184	2.40			4.000- 6.000	19	0.02	
6,001-8,000	122	5.01			6.001- 8.000	29	0.11	
8,001-10,000	177	18.04			8,001-10,000	47	0.42	
10,001-12,000	165	35.12			10,001-12,000	66	1.20	
12,001-14,000	87	33.74			12,001-14,000	74	2.43	
14,001-16,000	41	26.64			14,001-16,000	63	3.58	
16,001-18,000	21	20.87			16,001-18,000	46	4.22	
18,001-20,000	12	18.32			18,001-20,000	40	5.63	
20,001-22,000	6	12.24			20,001-22,000	35	7.20	
22,001-24,000	3	9.55			22,001-24,000	32	9.28	
24,001-26,000	2	6.46			24,001-26,000	37	14.95	
26,001-28,000	1	4.69			26,001-28,000	45	23.98	
28,001-30,000	0	3.06			28,001-30,000	51	35.73	
30,001-32,000	0	2.64			30,001-32,000	56	50.01	
32,001-34,000	0	1.70			32,001-34,000	50	55.73	
34,001-36,000	0	2.16			34,001-36,000	42	57.35	
36,001-38,000	0	0.00			36,001-38,000	29	49.37	
38,001-40,000	0	0.00			38,001-40,000	23	47.14	
					40,001-42,000	18	43.10	
					42,001-46,000	13	38.50	
					46,001-48,000	9	30.88	
					48,001-50,000	5	20.12	
					50,001-52,000	3	14.31	
					52,001-54,000	2	12.91	
					54,001-56,000	1	9.00	
					58,001-60,000	0	2.81	
TOTALS	1502	204.33			TOTALS	856	544.35	
S/A 18K EAL= TOTAL 18K EAL= WORKED BY:	204	750	T/A 18K =	544		AUTO 18K =	2	

JOB NUMBER:JOB TITLE:Actual DataLOCATION:Hwy 270 #2

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES		COMMERCIAL VEHICLES
1984 ADT		8		11320		10414		906
AVERAGE ADT		8		15460		14223		1237
DHV		5.84		2156				
DD = .60		F-FACTOR =	3.683		SN	I = 4	SI= 2.50	
SING	LE AXLES					TANDEM AXLES	<u>5</u>	
	#OF					#OF	:	
WEIGHT GROUP	AXLES	18K EQ 		v	VEIGHT GROUP	AXLES	18K EQ	
UNDER 2,000	183	0.04			UNDER 2,000	5	0.00	
2,001- 4,000	779	2.34			2,001- 4,000	22	0.01	
4,001- 6,000	261	3.39			4,000- 6,000	27	0.03	
6,001-8,000	173	7.09			6,001- 8,000	41	0.16	
8,001-10,000	251	25.57			8,001-10,000	66	0.60	
10,001-12,000	234	49.76			10,001-12,000	94	1.69	
12,001-14,000	123	47.80			12,001-14,000	104	3.45	
14,001-16,000	30	37.74			14,001-16,000	69	5.07	
18,001-18,000	30	29.06			10,001-10,000	60	5.96	
20 001-22 000	10	20.90			20 001-20,000	57	10.20	
22,001-22,000	5	13.53			22,001-22,000	45	13 15	
24,001-26,000	2	9.15			24,001-24,000	-53	21 18	
26 001-28 000	1	6.65			26 001-28 000	64	33.97	
28,001-30,000	1	4.34			28.001-30.000	73	50.62	
30.001-32.000	Ó	3.74			30.001-32.000	80	70.85	
32,001-34,000	Ō	2.40			32.001-34.000	71	78.96	
34,001-36,000	Ō	3.06			34,001-36,000	59	81.25	
36,001-38,000	0	0.00			36,001-38,000	42	69.95	
38,001-40,000	0	0.00			38,001-40,000	33	66.78	
					40,001-42,000	25	61.06	
					42,001-46,000	19	54.54	
					46,001-48,000	13	43.75	
					48,001-50,000	7	28.51	
					50,001-52,000	4	20.28	
					52,001-54,000	3	18.29	
					54,001-56,000	2	12.84	
					56,001-58,000	1	6.12	
					58,001-60,000	0	3.98	
TOTALS	2127	289.49			TOTALS	1213	771.23	
S/A 18K EAL= TOTAL 18K EAL= WORKED BY:	289	1064	T/A 18K =	771		AUTO 18K =	3	

JOB NUMBER: JOB TITLE: LOCATION:

Design Data Hwy 65 #1 & #12

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES		COMMERCIAL VEHICLES
1084 407		 9		11220		10414	•	
1904 ADT		0		10000		17490		1520
		0		15000		12047		1020
AVERAGE ADT		0		15160		13947		1213
DHV		5.84		2090				
DD = .60		F-FACTOR =	3.683	\$	SN	í = 4	SI= 2.50	
SING	LE AXLES					TANDEM AXLES	<u>b</u>	
	#OF					# OF		
WEIGHT GROUP	AXLES	18K EQ		N	EIGHT GROUP	AXLES	18K EQ	
UNDER 2,000	179	0.04			UNDER 2,000	5	0.00	
2,001- 4,000	764	2.29			2,001- 4,000	22	0.01	
4,001- 6,000	256	3.33			4,000- 6,000	26	0.03	
6,001- 8,000	170	6.95			6,001- 8,000	40	0.16	
8,001-10,000	246	25.07			8,001-10,000	65	0.58	
10,001-12,000	229	48.80			10,001-12,000	92	1.66	
12,001-14,000	121	46.87			12,001-14,000	102	3.38	
14,001-16,000	57	37.01			14,001-16,000	87	4.97	
16,001-18,000	29	29.00			16,001-18,000	64	5.86	
18,001-20,000	17	25.46			18,001-20,000	55	7.82	
20,001-22,000	8	17.01			20,001-22,000	48	10.00	
22,001-24,000	5	13.27			22,001-24,000	44	12.90	
24,001-26,000	2	8.97			24,001-26,000	52	20.76	
26,001-28,000	1	6.52			26,001-28,000	62	33.31	
28,001-30,000	1	4.26			28,001-30,000	71	49.64	
30,001-32,000	0	3.67			30,001-32,000	78	69.48	
32,001-34,000	0	2.36			32,001-34,000	70	77.43	
34,001-36,000	0	3.00			34,001-36,000	58	79.67	
36,001-38,000	0	0.00			36,001-38,000	41	68.59	
38,001-40,000	0	0.00			38,001-40,000	32	65.49	
					40,001-42,000	25	59.88	
					42,001-46,000	19	53.48	
					46,001-48,000	13	42.90	
					48,001-50,000	7	27.95	
					50,001-52,000	4	19.88	
					52,001-54,000	3	17.93	
					54,001-56.000	2	12.59	
					56,001-58,000	1	6.00	
					58,001-60,000	Ö	3.90	
TOTALS	2086	283.87			TOTALS	1190	756.26	
S/A 18K EAL= TOTAL 18K EAL=	284	1043	T/A 18K =	756		AUTO 18K =	3	

Actual Data Hwy 65 #1 & #12

COUNTY:

JOB NUMBER: JOB TITLE: LOCATION:

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES	ł	COMMERCIAL VEHICLES
1986 ADT 2006 ADT AVERAGE ADT		11 11 11		11095 19600 15348		987 1744 1365	 5 4 9	1220 2156 1688
DHV		8.03		2156				
DD = .60		F-FACTOR =	3.683	3	SN	í = 4	SI= 2.50	
SING	LE AXLES					TANDEM AXLE	<u>=S</u>	
WEIGHT GROUP	# OF AXLES 	18K EQ 		w	EIGHT GROUP	# C AXLE —	0F S 18K EQ 	
UNDER 2,000 2,001-4,000 6,001-8,000 8,001-10,000 10,001-12,000 14,001-16,000 16,001-18,000 20,001-22,000 22,001-24,000 24,001-26,000 26,001-28,000 30,001-32,000 30,001-32,000 34,001-36,000 36,001-38,000 38,001-40,000	250 1064 356 236 342 319 168 80 40 24 11 6 3 2 2 1 1 0 0 0 0	0.05 3.19 4.63 9.68 34.90 67.92 65.25 51.52 40.37 35.44 23.67 18.47 12.49 9.08 5.92 5.11 3.28 4.18 0.00 0.00			UNDER 2,000 2,001-4,000 6,001-8,000 10,001-12,000 12,001-12,000 14,001-12,000 16,001-22,000 20,001-22,000 22,001-24,000 24,001-26,000 28,001-30,000 30,001-32,000 30,001-32,000 30,001-34,000 40,001-44,000 40,001-42,000 40,001-42,000 50,001-50,000 52,001-56,000 56,001-56,000	3 3 5 9 14 12 8 7 6 6 6 7 7 8 9 10 9 8 5 5 4 3 2 2 1	7 0.00 0 0.01 7 0.04 6 0.22 0 0.81 3 4.70 1 6.92 9 8.16 7 10.89 7 13.93 1 17.95 2 28.90 7 46.37 9 96.71 7 107.78 0 110.90 7 95.48 5 91.16 4 83.35 6 74.45 8 59.72 0 38.91 6 27.68 5 24.96 3 17.52 1 8.35	
TOTALS	2904	395.15			58,001-60,000 TOTALS	165	1 5.44 6 1052.72	
S/A 18K EAL= TOTAL 18K EAL= WORKED BY:	395	1451	T/A 18K =	1053		AUTO 18K =	3	

JOB NUMBER: JOB TITLE: LOCATION:

Design Data Hwy 65 #2, #10, & #11

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES		COMMERCIAL VEHICLES
1986 ADT 1997 ADT AVERAGE ADT		11 11 11		11095 20000 15548		9875 17800 13837		1220 2200 1710
DHV		8.03		2200				
DD = .60		F-FACTOR =	3.683	3	SN	I = 4	SI= 2.50	
SING	LE AXLES					TANDEM AXLES	i	
WEIGHT GROUP	# OF AXLES	18K EQ		v	EIGHT GROUP	# OF AXLES	18K EQ	
	 253 1077	0.05			UNDER 2,000 2 001- 4 000	7	0.00	
4,001- 6,000 6,001- 8,000 8,001-10,000	361 239 347	4.69 9.81			4,000- 6,000 6,001- 8,000 8,001-10,000	37 56 92	0.04 0.22 0.82	
10,001-12,000 12,001-14,000 14,001 16,000	323 170	68.81 66.10			10,001-12,000 12,001-14,000	130 144 123	2.34 4.76 7.01	
16,001-18,000 16,001-18,000 18,001-20,000 20,001 23,000	41 24	40.90 35.90			16,001-18,000 18,001-20,000 20,001-22,000	90	8.26 11.03	
22,001-22,000 22,001-24,000 24,001-26,000 26,001 28,000	63	18.71 12.65			22,001-22,000 22,001-24,000 24,001-26,000	62 73	18.18 29.28	
28,001-20,000 28,001-30,000 30,001-32,000 32,001 34,000	1	6.00 5.18			28,001-30,000 30,001-32,000 32,001-34,000	101 110	70.00 97.97	
34,001-36,000 36,001-38,000 38,001 40,000	0	4.24 0.00			34,001-36,000 36,001-38,000 38,001-38,000	90 81 58	112.35 96.73	
30,001-40,000	U	0.00			40,001-42,000	45 35 26	92.33 84.44 75.42	
					48,001-48,000 48,001-50,000 50,001-52,000	10	39.42 28.04	
					52,001-54,000 54,001-56,000 56,001-58,000 58,001-60,000	5 3 1 1	25.29 17.75 8.46 5.51	
TOTALS	2 9 42	400.30			TOTALS	1678	1066.44	
S/A 18K EAL= TOTAL 18K EAL=	400	1470	T/A 18K =	1066		AUTO 18K =	3	

JOB NUMBER: JOB TITLE: LOCATION: Actual Data Hwy 65 #2, #10, & #11

COUNTY:

JOB NUMBER: JOB TITLE: LOCATION:	Design Data Hwy 412 #10 & #1	11				COUNTY:		
		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES		COMMERCIAL VEHICLES
1993 ADT 2013 ADT AVERAGE ADT		19 19 19		7195 12225 9710		5828 9902 7865		1367 2323 1845
DHV		13.87		1345				
DD = .60		F-FACTOR =	3.683		SN	í = 4	SI= 2.50	
	SINGLE AXLES					TANDEM AXLES	<u>b</u>	
	#OF					#OF		
WEIGHT GROUP	AXLES	18K EQ		w	EIGHT GROUP	AXLES	18K EQ	
UNDER 2,000	273	0.05			UNDER 2,000	8	0.00	
2,001- 4,000	1162	3.49			2,001- 4,000	33	0.01	
4,001- 6,000	389	5.06			4,000- 6,000	40	0.04	
6,001- 8,000	258	10.58			6,001- 8,000	61	0.24	
8,001-10,000	374	38.14			8,001-10,000	99	0.89	
10,001-12,000	348	74.23			10,001-12,000	140	2.53	
12,001-14,000	184	71.30			12,001-14,000	156	5.14	
14,001-16,000	87	56.30			14,001-16,000	133	7.57	
16,001-18,000	44	44.12			16,001-18,000	97	8.91	
18,001-20,000	26	38.72			18,001-20,000	84	11.90	
20,001-22,000	12	25.87			20,001-22,000	74	15.22	
22,001-24,000	/	20.18			22,001-24,000	67	19.62	
24,001-26,000	3	13.65			24,001-26,000	79	31.59	
26,001-28,000	2	9.92			26,001-28,000	95	50.67	
28,001-30,000	1	6.47			28,001-30,000	109	75.51	
30,001-32,000	1	5.59			30,001-32,000	119	105.69	
32,001-34,000	0	3.59			32,001-34,000	100	101.79	
34,001-30,000	0	4.57			34,001-30,000	60	104.25	
38,001-36,000	0	0.00			38,001-30,000	10	04.33	
00,001-40,000	v	0.00			40 001-42 000	37	91.02	
					42 001-46 000	28	81.36	
					46 001-48 000	19	65.26	
					48 001-50 000	11	42.52	
					50.001-52.000	7	30.25	
					52.001-54.000	5	27.28	
					54.001-56.000	3	19.15	
					56,001-58,000	1	9.13	
					58,001-60,000	1	5.94	
TOTALS	3174	431.82			TOTALS	1810	1150.42	
S/A 18K EAL= TOTAL 18K E WORKED BY:	432 EAL=	1584	T/A 18K =	1150		AUTO 18K =	2	

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES		COMMERCIAL VEHICLES
1993 ADT 1997 ADT AVERAGE ADT		19 19 19		7195 8500 7848		5828 6885 6356		1367 1615 1491
DHV		13.87		935				
DD = .60		F-FACTOR =	3.683		SN	í = 4	SI= 2.50	
SING	<u>E AXLES</u>					TANDEM AXLES	i	
WEIGHT GROUP	# OF AXLES 	18K EQ		WEIG	HT GROUP	# OF AXLES 	18K EQ	
UNDER 2,000 2,001-4,000 4,001-6,000 6,001-8,000 8,001-10,000 10,001-12,000 14,001-16,000 16,001-18,000 18,001-20,000 22,001-22,000 24,001-26,000 26,001-28,000 28,001-30,000 30,001-34,000 34,001-36,000	221 939 315 209 302 282 149 71 36 21 10 6 3 2 1 1 1 0 0 0	0.04 2.82 4.09 8.55 30.82 59.99 57.62 45.50 35.65 31.30 20.91 16.31 11.03 8.02 5.23 4.51 2.90 3.69		UN 8 10 12 14 16 16 20 22 24 26 26 26 33 33 34 34 34 34	NDER 2,000 2,001- 4,000 6,001- 8,000 6,001- 8,000 0,001-12,000 0,001-12,000 0,001-16,000 6,001-20,000 0,001-22,000 0,001-22,000 0,001-26,000 0,001-30,000 0,001-30,000 0,001-30,000 0,001-36,000	6 27 32 49 80 113 126 107 78 68 59 54 64 77 88 96 86 86 71	0.00 0.01 0.03 0.20 0.72 2.04 4.15 6.11 7.20 9.62 12.30 15.85 25.53 40.95 61.03 85.41 95.19 97.95	
36,001-38,000 38,001-40,000 TOTALS	0 0 2565	0.00 0.00 348.99		36 40 42 44 46 50 55 56 56 56	6,001-38,000 9,001-40,000 9,001-42,000 9,001-42,000 9,001-50,000 9,001-50,000 9,001-52,000 9,001-54,000 9,001-58,000 9,001-58,000 9,001-60,000 TALS	50 40 30 23 16 9 5 4 2 1 1 1	84.33 80.51 73.61 65.75 52.74 34.37 24.45 22.05 15.47 7.38 4.80 929.76	
S/A 18K EAL= TOTAL 18K EAL= WORKED BY:	349	1280	T/A 18K =	930		AUTO 18K =	1	

Actual Data Hwy 412 #10 & #11

COUNTY:

JOB NUMBER: JOB TITLE: LOCATION:

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES		COMMERCIAL VEHICLES
1993 ADT 2013 ADT AVERAGE ADT		19 19 19		7195 14040 10618		5828 11372 8600		1367 2668 2017
DHV		13.87		1544				
DD = .60		F-FACTOR =	3.683		SN	I = 4	SI= 2.50	
SINC	ELE AXLES					TANDEM AXLES	i	
WEIGHT GROUP	# OF AXLES	18K EQ		WE	EIGHT GROUP	# OF AXLES	18K EQ	
 UNDER 2,000		0.06			UNDER 2,000		0.00	
2,001- 4,000 4,001- 6,000	1271 426	3.81 5.54			2,001-4,000	36 44	0.01	
6,001- 8,000	282	11.57			6,001- 8,000	66	0.27	
8,001-10,000	409	41.70			8,001-10,000	108	0.97	
10,001-12,000	381	81.17			10,001-12,000	153	2.76	
12,001-14,000	201	77.96			12,001-14,000	170	5.62	
14,001-16,000	95	61.56			14,001-16,000	145	8.27	
16,001-18,000	48	48.24			16,001-18,000	106	9.75	
18,001-20,000	29	42.34			18,001-20,000	92	13.01	
20,001-22,000	14	28.29			20,001-22,000	80	16.64	
22,001-24,000	8	22.07			22,001-24,000	73	21.45	
24,001-26,000	4	14.93			24,001-26,000	86	34.54	
26,001-28,000	2	10.85			26,001-28,000	104	55.40	
28,001-30,000	1	7.08			28,001-30,000	119	82.57	
30,001-32,000	1	6.11			30,001-32,000	130	115.56	
32,001-34,000	0	3.92			32,001-34,000	110	126.79	
34,001-36,000	0	5.00			34,001-30,000	90	132.52	
38,001-38,000	0	0.00			38 001-30,000	54	108.03	
00,001-40,000	v	0.00			40 001-42 000	41	00.00	
					42 001-46 000	31	88.96	
					46.001-48.000	21	71.36	
					48.001-50.000	12	46.50	
					50.001-52.000	7	33.07	
					52,001-54,000	6	29.83	
					54,001-56,000	3	20.94	
					56,001-58,000	1	9.98	
					58,001-60,000	1	6.49	
TOTALS	3470	472.18		-	TOTALS	1979	1257.94	
S/A 18K EAL= TOTAL 18K EAL= WORKED BY:	472	1732	T/A 18K =	1258		AUTO 18K =	2	

JOB NUMBER:JOB TITLE:Design DataLOCATION:Hwy 412 #12

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES		COMMERCIAL VEHICLES
1993 ADT 1997 ADT AVERAGE ADT		19 19 19		7195 13000 10098		5828 10530 8179		1367 2470 1919
DHV		13.87		1430		0.10		
DD = .60		F-FACTOR =	3.683		SN	I = 4	SI= 2.50	
SIN	GLE AXLES					TANDEM AXLES	<u>b</u>	
WEIGHT GROUP	# OF AXLES	18K EQ		w	EIGHT GROUP	# OF AXLES	18K EQ	
2 001 4 000	1200	0.00			2 001 4 000	24	0.00	
2,001-4,000	1209	5.03			2,001-4,000	34	0.01	
6 001- 8 000	268	11.00			6 001- 8 000	63	0.04	
8 001-10 000	389	39.66			8 001-10 000	103	0.23	
10 001-12 000	362	77 19			10 001-12 000	146	2 63	
12.001-14.000	191	74.15			12.001-14.000	162	5.34	
14,001-16,000	91	58.54			14,001-16,000	138	7.87	
16,001-18,000	46	45.88			16,001-18,000	101	9.27	
18,001-20,000	27	40.27			18,001-20,000	88	12.37	
20,001-22,000	13	26.90			20,001-22,000	76	15.83	
22,001-24,000	7	20.98			22,001-24,000	70	20.40	
24,001-26,000	4	14.20			24,001-26,000	82	32.85	
26,001-28,000	2	10.32			26,001-28,000	99	52.69	
28,001-30,000	1	6.73			28,001-30,000	113	78.52	
30,001-32,000	1	5.81			30,001-32,000	124	109.90	
32,001-34,000	0	3.73			32,001-34,000	110	122.49	
34,001-36,000	0	4.75			34,001-36,000	91	126.03	
36,001-38,000	0	0.00			36,001-38,000	65	108.51	
38,001-40,000	0	0.00			38,001-40,000	51	103.59	
					40,001-42,000	39	94.72	
					42,001-46,000	29	84.60	
					40,001-40,000	20	07.07	
					40,001-50,000	7	21 /5	
					50,001-52,000	5	28 37	
					54,001-54,000	3	10.01	
					56 001-58 000	1	9.49	
					58,001-60,000	1	6.18	
TOTALS	3300	449.06			TOTALS	1882	1196.33	
S/A 18K EAL= TOTAL 18K EAL= WORKED BY:	449	1647	T/A 18K =	1196		AUTO 18K =	2	

JOB NUMBER: JOB TITLE: LOCATION: Actual Data Hwy 412 #12

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES		COMMERCIAL VEHICLES
1993 ADT		16		8950		7518		1432
2013 ADT		16		14040		11794		2246
AVERAGE ADT		16		11495		9656		1839
DHV		11.68		1544				
DD = .60		F-FACTOR =	3.683		SN	I = 4	SI= 2.50	
SING	LE AXLES					TANDEM AXLES	i	
	#OF	18K EO		10		# OF	18K EO	
UNDER 2 000	272	0.05			UNDER 2,000	8	0.00	
2 001- 4 000	1159	3.48			2 001- 4 000	33	0.00	
4 001- 6 000	388	5.05			4,000- 6,000	40	0.04	
6.001-8.000	257	10.55			6.001- 8.000	60	0.24	
8,001-10,000	373	38.02			8.001-10.000	99	0.89	
10 001-12 000	347	74.00			10 001-12 000	140	2.52	
12,001-14,000	183	71.08			12,001-14,000	155	5.12	
14 001-16 000	87	56 12			14 001-16 000	132	7.54	
16.001-18.000	44	43.98			16.001-18.000	97	8.89	
18 001-20 000	26	38.60			18 001-20 000	84	11.86	
20 001-22 000	12	25 79			20 001-22 000	73	15 17	
22 001-24 000	7	20.12			22 001-24 000	67	19.56	
24 001-26 000	. 3	13.61			24 001-26 000	79	31 49	
26 001-28 000	2	9.89			26 001-28 000	95	50.51	
28.001-30.000	1	6.45			28,001-30,000	108	75.28	
30 001-32 000	1	5.57			30 001-32 000	119	105.36	
32 001-34 000	, 0	3.58			32 001-34 000	106	117 42	
34 001-36 000	ň	4 56			34 001-36 000	88	120.82	
36 001-38 000	ő	0.00			36 001-38 000	62	104.02	
38 001-40 000	ñ	0.00			38 001-40 000	49	99.31	
00,001 40,000	v	0.00			40 001-42 000	37	90.80	
					42 001-46 000	28	81 10	
					46 001-48 000	19	65.06	
					48 001-50 000	11	42.39	
					50 001-52 000		30.15	
					52 001-54 000	5	27 19	
					54 001-56 000	ů 3	19.09	
					56.001-58.000	1	9.10	
					58,001-60,000	1	5.92	
TOTALS	3164	430.49			TOTALS	1804	1146.87	
S/A 18K EAL= TOTAL 18K EAL= WORKED BY:	430	1579	T/A 18K =	1147		AUTO 18K =	2	

JOB NUMBER: JOB TITLE: LOCATION:

Design Data Hwy 412 #13

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES		COMMERCIAL VEHICLES
1993 ADT		16		8950		7518	-	1432
1997 ADT		16		17500		14700		2800
AVERAGE ADT		16		13225		11109		2116
DHV		11.68		1925				
DD = .60		F-FACTOR =	3.683	3	SN	i = 4	SI= 2.50	
SING	<u> GLE AXLES</u>					TANDEM AXLES	<u>5</u>	
	#OF					# OF	:	
WEIGHT GROUP	AXLES	18K EQ		v	EIGHT GROUP	AXLES	18K EQ	
	313	0.06				٩	0.00	
2 001- 4 000	1333	4.00			2 001- 4 000	38	0.00	
4 001- 6 000	447	5.81			4 000- 6 000	46	0.01	
6 001- 8 000	296	12 13			6 001- 8 000	70	0.00	
8.001-10.000	429	43.74			8.001-10.000	113	1.02	
10.001-12.000	400	85.14			10.001-12.000	161	2.90	
12.001-14.000	211	81.78			12.001-14.000	179	5.89	
14.001-16.000	100	64.57			14.001-16.000	152	8.68	
16.001-18.000	51	50.60			16.001-18.000	111	10.22	
18.001-20.000	30	44.41			18.001-20.000	97	13.65	
20.001-22.000	14	29.67			20.001-22.000	84	17.45	
22,001-24,000	8	23.14			22,001-24,000	77	22.50	
24.001-26.000	4	15.66			24.001-26.000	90	36.23	
26,001-28,000	2	11.38			26,001-28,000	109	58.11	
28,001-30,000	1	7.43			28,001-30,000	125	86.61	
30,001-32,000	1	6.41			30,001-32,000	137	121.22	
32,001-34,000	0	4.11			32,001-34,000	122	135.09	
34,001-36,000	0	5.24			34,001-36,000	101	139.01	
36,001-38,000	0	0.00			36,001-38,000	71	119.68	
38,001-40,000	0	0.00			38,001-40,000	56	114.26	
					40,001-42,000	43	104.47	
					42,001-46,000	32	93.31	
					46,001-48,000	22	74.85	
					48,001-50,000	12	48.77	
					50,001-52,000	7	34.69	
					52,001-54,000	6	31.29	
					54,001-56,000	4	21.96	
					56,001-58,000	1	10.47	
					58,001-60,000	1	6.81	
TOTALS	3640	495.28			TOTALS	2076	1319.47	
S/A 18K EAL= TOTAL 18K EAL=	495	1817	T/A 18K =	1319		AUTO 18K =	2	

JOB NUMBER: JOB TITLE: LOCATION:

Actual Data Hwy 412 #13

		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES		COMMERCIAL VEHICLES
1986 ADT 2006 ADT AVERAGE ADT		16 16 16		10425 18035 14230		8757 15149 11953		1668 2886 2277
DHV		11. 68		1984				
DD = .60		F-FACTOR =	3.683		SI	J = 4	SI= 2.50	
SING	LE AXLES					TANDEM AXLES	<u>5</u>	
WEIGHT GROUP	# OF AXLES	18K EQ		w	EIGHT GROUP	# OF AXLES	18K EQ	
UNDER 2,000	337	0.07			UNDER 2,000	9	0.00	
2,001- 4,000 4 001- 6 000	1434 481	4.30			2,001-4,000	41	0.01	
6.001- 8.000	318	13.06			6,001- 8,000	75	0.30	
8,001-10,000	461	47.06			8,001-10,000	122	1.10	
10,001-12,000	430	91.60			10,001-12,000	173	3.12	
12,001-14,000	227	87.99			12,001-14,000	192	6.34	
14,001-16,000	108	69.48			14,001-16,000	164	9.34	
16,001-18,000	54	54.44			16,001-18,000	120	11.00	
18,001-20,000	33	47.79			18,001-20,000	104	14.68	
20,001-22,000	15	31.93			20,001-22,000	91	18.78	
22,001-24,000	9	24.90			22,001-24,000	83	24.21	
24,001-26,000	4	10.00			24,001-20,000	9/	30.90	
20,001-20,000	2	7.00			28,001-28,000	124	02.00	
30 001-32 000	1	689			30 001-32 000	147	130.43	
32 001-34 000	0	4 4 3			32 001-34 000	131	145.36	
34 001-36 000	ŏ	5.64			34 001-36 000	108	149 57	
36.001-38.000	Ő	0.00			36.001-38.000	77	128.77	
38.001-40.000	Ō	0.00			38,001-40,000	61	122.94	
					40,001-42,000	46	112.41	
					42,001-46,000	35	100.40	
					46,001-48,000	24	80.54	
					48,001-50,000	13	52.48	
					50,001-52,000	8	37.33	
					52,001-54,000	6	33.66	
					54,001-56,000	4	23.63	
					58,001-58,000	2	11.26 7.33	
TOTALS	3916	532.91			TOTALS	2233	1419.74	
S/A 18K EAL= TOTAL 18K EAL= WORKED BY:	533	1955	T/A 18K =	1420		AUTO 18K =	2	

JOB NUMBER: JOB TITLE: LOCATION:

Design Data Hwy 412 #14
		% TRUCKS		TOTAL VEHICLES		PASSENGER VEHICLES		COMMERCIAL VEHICLES
1986 ADT		16		10425		8757		1668
1997 ADT		16		18000		15120		2880
AVERAGE ADT		16		14213		11030		2000
AVENAGE ADT		10		14210		11303		2214
DHV		11.6 8		1980				
DD = .60		F-FACTOR =	3.683		SI	1 = 4	SI= 2.50	
SINC	ELE AXLES					TANDEM AXLES	i	
	# 0F					#0F		
WEIGHT GROUP	AXLES	18K EQ		w	EIGHT GROUP	AXLES	18K EQ	
	336	0.07					0.00	
2 001 4 000	1433	4 30			2 001 4 000	41	0.00	
4 001- 6 000	480	6.24			4 000- 6 000	41	0.01	
6,001- 8,000	318	13.04			6 001- 8 000		0.00	
8 001-10 000	461	47.04			8 001-10 000	122	1 10	
10 001-12 000	430	47.01 01.40			10 001-12 000	173	3 11	
12 001-14 000	430	97.49			12 001-12,000	102	633	
14 001-16 000	108	69.39			14 001-16 000	164	9.33	
16 001-18 000	54	54.38			16 001-18 000	110	10.99	
18 001-20 000	32	47 73			18 001-20 000	104	14.67	
20 001-22 000	15	31.80			20 001-20,000	04	19.76	
22,001-22,000	10	24.87			22,001-22,000	83	24.18	
24,001-24,000	3	16.83			24,001-24,000	03	24.10	
26,001-20,000		12.00			26,001-20,000	117	62.45	
28,001-20,000		7 08			28,001-20,000	13/	02.45	
30 001 32 000	4	7.50			20,001-30,000	104	130.07	
32,001,34,000		4.42			32,001-32,000	121	145.19	
34 001-34,000	0	4.42 5.63			34 001-34,000	109	140.10	
36,001,38,000	0	0.00			34,001-30,000	77	149.09	
38,001-38,000	0	0.00			29 001 40 000	60	120.02	
38,001-40,000	U	0.00			40 001 42 000		142.75	
					40,001-42,000	40	100.29	
					42,001-40,000	35	100.20	
					40,001-40,000	24	50.44 50.44	
					40,001-50,000	13	22.41	
					50,001-52,000	0	37.20	
					52,001-54,000	0	33.02	
					54,001-56,000	4	23.00	
					58 001-58,000	2	7 32	
					00,001-00,000	•	1.02	
TOTALS	3912	532.26			TOTALS	2231	1418.00	
S/A 18K EAL= TOTAL 18K EAL= WORKED BY:	532	1953	T/A 18K =	1418		AUTO 18K =	2	

COUNTY:

JOB NUMBER: JOB TITLE: LOCATION:

Actual Data Hwy 412 #14

APPENDIX J

CONSTRUCTION COSTS

AND

MAINTENANCE COST HISTORIES

Table J-1: Construction Costs for Highway 82 #1 and #2

Location: Hwy 82 #1 & #2

		-
Job	Number:	R70050

Item No.	Description	Quantity	Unit	Unit Price	Total (\$)		
	4" PIPE UNDERDRAINS						
611	4" pipe underdrains	5,000	LF	2.50	12,500		
611	underdrain outlet protectors	20	EACH	75.00	1,500		
	SELECTED PIPE BEDDING						
SP & 606	selected pipe (bedding)	200	CU YD	5.00	1,000		
	BASE AND SURFACING						
303	agrgegate base course (class 5)	7,844	TON	10.50	82,363		
401	tack coat (0.03 gal per sq yd)	39,417	GAL	0.75	29,563		
	achm binder course (type 1)	48,870	TON				
SS & 405	mineral aggregate in achm binder course (type 1)	46,817	TON	15.76	737,840		
405, 406	asphalt cement in achm binder course (type 1)	2,053	TON	125.00	256,566		
	achm surface course (type 1)	34,694	TON				
SS & 406	mineral aggregate in achm surface course (type 1)	32,889	TON	15.76	518,338		
405, 406	asphalt cement in achm surface course (type 1)	1,804	TON	125.00	225,508		
	achm binder course (type 2)	20,934	TON				
SS & 405	mineral aggregate in achm binder course (type 2)	19,992	TON	15.76	315,078		
405, 406	asphalt cement in achm binder course (type 2)	942	TON	125.00	117,755		
	achm surface course (type 2)	6,931	TON				
SS & 406	mineral aggregate in achm surface course (type 2)	6,529	TON	15.76	102,903		
405, 406	asphalt cement in achm surface course (type 2)	402	TON	125.00	50,253		
	TOTAL ROADWAY CONSTRUCTION COSTS FOR PROJECT						

Table J-2: Construction Costs for Highway 79 #1 and #2

Hwy 79 #1 & #2 R70016 Location:

Item No.	Description	Quantity	Unit	Unit Price	Total (\$)
	4" PIPE UNDERDRAINS				
611	4" pipe underdrains	5,800	LF	2.50	14,500
611	underdrain outlet protectors	20	EACH	75.00	1,500
	SELECTED PIPE BEDDING				
SS & 606	selected pipe (bedding)	1,500	CU YD	12.50	18,750
	BASE AND SURFACING				
303	agrgegate base course (class 5)	228,399	TON	7.25	1,655,891
401	prime coat (0.4 gal per sq yd)	49,368	GAL	1.00	49,368
401	tack coat (0.03 gal per sq yd)	13,795	GAL	1.00	13,795
	achm binder course (type 1)	34,577	TON		
SP, SS & 405	mineral aggregate in achm binder course (type 1)	33,124	TON	18.58	615,449
405, 406	asphalt cement in achm binder course (type 1)	1,452	TON	150.00	217,832
	achm surface course (type 1)	8,980	TON		
SP, SS & 406	mineral aggregate in achm surface course (type 1)	8,513	TON	17.68	150,516
405, 406	asphalt cement in achm surface course (type 1)	467	TON	150.00	70,046
	achm binder course (type 2)	12,397	TON		
SP, SS & 405	mineral aggregate in achm binder course (type 2)	11,840	TON	18.58	219,978
405, 406	asphalt cement in achm binder course (type 2)	558	TON	150.00	83,682
	achm surface course (type 2)	3,808	TON		
SP, SS & 405	mineral aggregate in achm surface course (type 2)	3,591	TON	17.68	63,488
405, 406	asphalt cement in achm surface course (type 2)	217	TON	150.00	32,558
	TOTAL ROADWAY CONSTRUCTION COSTS FOR PROJECT				3,207,354

Table J-3: Construction Costs for Highway 49 #1

Hwy 49 #1 R00081 Location:

Item No.	Description	Quantity	Unit	Unit Price	Total (\$)
	4" PIPE UNDERDRAINS				
611	4" pipe underdrains	3,800	LF	4.65	17,670
611	underdrain outlet protectors	12	EACH	295.00	3,540
	SELECTED PIPE BEDDING AND BACKFILL				
606	selected pipe (bedding)	250	CU YD		
606	selected pipe (backfill)	250	CU YD		
	STONE BACKFILL				
SS & 207	stone backfill	1,000	TON	14.40	14,400
	BASE AND SURFACING				
SS & 303	aggregate base course (class 7)	83,957	TON	11.24	943,676
401	prime coat (0.4 gal per sq yd)	10,852	GAL	1.40	15,193
401	tack coat (0.03 gal per sq yd)	8,367	GAL	1.17	9,790
	performance grade achm binder course (type 1)	24,785	TON		
SP,SS & 406	mineral aggregate in performance grade achm binder course (type 1)	23,645	TON	23.10	546,189
SP & 406	asphalt binder (PG 64-22) in performance grade achm binder course (type 1)	1,140	TON	140.00	159,613
	performance grade achm surface course (type 1)	23,960	TON		
SP,SS & 407	mineral aggregate in performance grade achm surface course (type 1)	22,714	TON	22.90	520,152
SP & 407	asphalt binder (PG 64-22) in performance grade achm surface course (type 1)	1,246	TON	140.00	174,429
	TOTAL ROADWAY CONSTRUCTION COSTS FOR PROJECT				2,404,652

Table J-4: Construction Costs for Highway 49 #2

Hwy 49 #2 R00071 Location:

Item No.	Description	Quantity	Unit	Unit Price	Total (\$)		
	4" PIPE UNDERDRAINS						
SP & 601	4" pipe underdrains	22,428	LF	3.20	71,770		
611	underdrain outlet protectors	75	EACH	200.00	15,000		
	STONE BACKFILL						
SS & 207	stone backfill	5,200	TON	11.00	57,200		
	SELECTED PIPE BEDDING AND BACKFILL						
606	selected pipe (bedding)	250	CU YD				
606	selected pipe (backfill)	250	CU YD				
	BASE AND SURFACING						
303	aggregate base course (class 7)	14,501	TON	10.50	152,263		
401	prime coat (0.4 gal per sq yd)	7,605	GAL	1.36	10,342		
401	tack coat (0.03 gal per sq yd)	29,345	GAL	1.50	44,017		
	performance grade achm binder course (type 1)	89,489	TON				
SS & 406	mineral aggregate in performance grade achm binder course (type 1)	85,730	TON	27.75	2,379,010		
406	asphalt binder (PG 64-22) in performance grade achm binder course (type 1)	3,759	TON	110.00	413,437		
	performance grade achm surface course (type 1)	32,016	TON				
SS & 407	mineral aggregate in performance grade achm surface course (type 1)	30,351	TON	27.25	827,072		
407	asphalt binder (PG 64-22) in performance grade achm surface course (type 1)	1,665	TON	110.00	183,132		
	TOTAL ROADWAY CONSTRUCTION COSTS FOR PROJECT						

Table J-5: Construction Costs for Highway 270 #1

Location: Hwy 270 #1

Item No.	Description	Quantity	Unit	Unit Price	Total (\$)
	4" PIPE UNDERDRAINS				
611	4" pipe underdrains	1,000	LF	4.00	4,000
	BASE AND SURFACING				
306	crushed stone base course (class SB-2)	125,231	TON	6.28	786,453
401	prime coat (0.4 gal per sq yd)	66,519	GAL	1.25	83,149
401	tack coat (0.03 gal per sq yd)	3,731	GAL	1.15	4,291
	achm binder course (type 2)	25,580	TON		
SP & 405	mineral aggregate in achm binder course (type 2)	24,429	TON	15.90	388,424
SP & 405	asphalt cement in achm binder course (type 2)	1,151	TON	195.43	224,962
	achm surface course (type 2)	13,287	TON		
SP & 408	mineral aggregate in achm surface course (type 2)	12,556	TON	16.40	205,925
SP & 408	asphalt cement in achm surface course (type 2)	731	TON	195.43	142,819
	bituminous plant mix seal	2,744	TON		
SP-413-1	mineral aggregate in bituminous plant mix seal	2,563	TON	20.40	52,289
SP-413-1	asphalt cement in bituminous plant mix seal	181	TON	196.00	35,500
TOTAL ROADWAY CONSTRUCTION COSTS FOR PROJECT					

Table J-6: Construction Costs for Highway 270 #2

Location:	Hwy 270 #2				
Job Number:	60115				
Item No.	Description	Quantity	Unit	Unit Price	Total (\$)
	BASE AND SURFACING				
306	crushed stone base course (class SB-2)	17,810	TON	5.95	105,970
401	prime coat (0.4 gal per sq yd)	8,373	GAL	0.80	6,698
401	tack coat (0.1 gal per sq yd)	15,249	GAL	0.75	11,436
	achm stabilized base course	63,684	TON		
309	mineral aggregate in achm stabilized base course	61,455	TON	15.90	977,135
SP & 309	asphalt cement in achm stabilized base course	2,229	TON	149.25	332,669
	achm binder course (type 2)	20,123	TON		
405	mineral aggregate in achm binder course (type 2)	19,157	TON	17.51	335,441
SP & 405	asphalt cement in achm binder course (type 2)	966	TON	162.25	156,718
	achm surface course (type 2)	12,258	TON		
408	mineral aggregate in achm surface course (type 2)	11,523	TON	18.63	214,665
SP & 408	asphalt cement in achm surface course (type 2)	735	TON	162.25	119,332
	TOTAL ROADWAY CONSTRUCTION COSTS FOR PROJECT				2,260,064

Table J-7: Construction Costs for Highway 65 #1 and #12

Hwy 65 #1 & #12 8827 Location:

Item No.	Description	Quantity	Unit	Unit Price	Total (\$)
	4" PIPE UNDERDRAINS				
611	4" pipe underdrains	6,100	LF	4.20	25,620
	SURFACING				
306	crushed stone base course (class sb-2)	60,121	TON	6.00	360,726
401	prime coat (0.4 gla per sq yd)	48,838	GAL	1.05	51,280
401	tack coat (0.1 gal per sq yd)	15,064	GAL	1.00	15,064
	achm binder course (type 2)	42,992	TON		
SP & 405	mineral aggregate in achm binder course (type 2)	41,057	TON	15.95	654,866
SP & 405	asphalt cement in achm binder course (type 2)	1,935	TON	170.00	328,890
	achm surface course (type 2)	13,533	TON		
SP & 408	mineral aggregate in achm surface course (type 2)	12,829	TON	16.80	215,530
SP & 408	asphalt cement in achm surface course (type 2)	704	TON	170.00	119,631
	bituminous plant seal mix	2,723	TON		
SP-413-1	mineral aggregate in bituminous plant seal mix	2,546	TON	23.55	59,947
SP-413-1	asphalt cement in bituminous plant seal mix	177	TON	170.00	30,084
TOTAL ROADWAY CONSTRUCTION COSTS FOR PROJECT					

Table J-8: Construction Costs for Highway 65 #2, #10, and #11

Hwy 65 #2, #10, & #11 Location:

Job	Number:	R
200	1 Junioor.	1.

Job Number:	R80010				
Item No.	Description	Quantity	Unit	Unit Price	Total (\$)
	4" PIPE UNDERDRAINS				
611	4" pipe underdrains	5,000	LF	2.00	10,000
	SURFACING				
306	crushed stone base course (class sb-2)	1,718	TON	10.25	17,610
401	prime coat (0.4 gal per sq yd)	2,480	GAL		
401	tack coat (0.1 gal per sq yd)	11,156	GAL	0.90	10,040
	hmas base course	33,044	TON		
SP	mineral aggregate in hmas base course	31,557	TON	13.70	432,326
SP	asphalt cement in hmas base course	1,487	TON	150.00	223,044
	achm binder course (type 2)	21,130	TON		
SP & 405	mineral aggregate in achm binder course (type 2)	20,221	TON	15.15	306,350
SP & 405	asphalt cement in achm binder course (type 2)	909	TON	150.00	136,287
	achm surface course (type 2)	9,336	TON		
SP & 408	mineral aggregate in achm surface course (type 2)	8,869	TON	16.00	141,907
SP & 408	asphalt cement in achm surface course (type 2)	467	TON	150.00	70,020
	BITUMINOUS PLANT MIX SEAL				
401	tack coat (0.03 gal per sq yd)	3,025	TON	0.90	2,723
	bituminous plant mix seal	2,723	TON		
SP-413-1	mineral aggregate in bituminous plant mix seal	2,546	TON	19.80	50,402
SP-413-1	asphalt cement in bituminous plant mix seal	177	TON	150.00	26,544
	TOTAL ROADWAY CONSTRUCTION COSTS FOR PROJECT				1,427,253

Table J-9: Construction Costs for Highway 412 #10 and #11

Location: Hwy 412 #10 & #11

Item No.	Description	Quantity	Unit	Unit Price	Total (\$)		
	STONE BACKFILL						
207	stone backfill	1,000	TON	10.50	10,500		
	SELECTED PIPE BEDDING						
606	selected pipe (bedding)	200	CU YD				
	BASE AND SURFACING						
303	aggregate base course (class 7)	429,348	TON	9.50	4,078,809		
401	prime coat (0.4 gal per sq yd)	74,677	TON	0.70	52,274		
401	tack coat (0.03 gal per sq yd)	30,308	GAL	0.70	21,215		
	achm stabilized base course	136,234	TON				
SS & 405	mineral aggregate in achm stabilized base course	130,512	TON	14.15	1,846,745		
405	asphalt cement in achm stabilized base course	5,722	TON	90.00	514,964		
	achm binder course (type 1)	71,841	TON				
SS & 406	mineral aggregate in achm binder course (type 1)	68,608	TON	14.70	1,008,543		
406	asphalt cement in achm binder course (type 1)	3,233	TON	90.00	290,957		
	achm surface course (type 1)	58,812	TON				
SS & 407	mineral aggregate in achm surface course (type 1)	55,695	TON	23.30	1,297,699		
407	asphalt cement in achm surface course (type 1)	3,117	TON	90.00	280,535		
	TOTAL ROADWAY CONSTRUCTION COSTS FOR PROJECT						

Table J-10: Construction Costs for Highway 412 #12 and #13

Hwy 412 #12 & #13 40112 Location:

Job	Num	ber:	
200	1 1 1 1 1 1		

Item No.	Description	Quantity	Unit	Unit Price	Total (\$)
	4" PIPE UNDERDRAINS				
611	4" pipe underdrains	5,000	LF	5.50	27,500
611	underdrain outlet protectors	25	EACH	25.00	625
	SELECTED PIPE BEDDING				
606	selected pipe (bedding)	500	CU YD		
	STONE BACKFILL				
207	stone backfill	5,000	TON	15.00	75,000
	BASE AND SURFACING				
303	agrgegate base course (class 5)	16,484	TON	13.00	214,288
401	tack coat (0.03 gal per sq yd)	16,999	GAL	0.70	11,899
401	prime coat (0.40 gal per sq yd)	9,596	GAL	0.70	6,717
	achm stabilized base course	946	TON		
SS & 405	mineral aggregate in achm stabilized base course	906	TON	20.00	18,125
405	asphalt cement in achm stailized base course	40	TON	142.00	5,642
	achm binder course (type 1)	17,726	TON		
SS & 406	mineral aggregate in achm binder course (type 1)	16,929	TON	22.00	372,427
406	asphalt cement in achm binder course (type 1)	798	TON	142.00	113,270
	achm surface course (type 1)	31,643	TON		
SS & 407	mineral aggregate in achm surface course (type 1)	29,966	TON	25.00	749,146
407	asphalt cement in achm surface course (type 1)	1,677	TON	150.00	251,561
TOTAL ROADWAY CONSTRUCTION COSTS FOR PROJECT			1,846,201		

Table J-11: Construction Costs for Highway 412 #14

Location:Hwy 412 #14Job Number:R40016

JOU Number.	R 1 0010				
Item No.	Description	Quantity	Unit	Unit Price	Total (\$)
	4" PIPE UNDERDRAINS				
611	4" pipe underdrains	4,000	LF	4.50	18,000
	BASE AND SURFACING				
306	agrgegate base course (class sb-2)	560	TON	11.00	6,160
401	tack coat (0.03 gal per sq yd)	6,052	GAL	2.00	12,104
	hmas bas course	21,017	TON		
SP	mineral aggregate in hmas base course	20,113	TON	20.75	417,346
SP	asphalt cement in hmas base course	904	TON	170.00	153,633
	achm binder course (type 2)	10,479	TON		
SP & 405	mineral aggregate in achm binder course (type 2)	10,028	TON	22.00	220,625
SP & 405	asphalt cement in achm binder course (type 2)	451	TON	170.00	76,601
	achm surface course (type 2)	4,707	TON		
SP & 408	mineral aggregate in achm surface course (type 2)	4,439	TON	24.90	110,528
SP & 408	asphalt cement in achm surface course (type 2)	268	TON	170.00	45,613
TOTAL ROADWAY CONSTRUCTION COSTS FOR PROJECT			1,060,611		

Table J-12: Maintenance Costs for Highway 82

	Route and Section: Length of Section (miles): Number of Lanes:	Hwy 82 Section 4 15.86 3
Year	Maintenance Function	Total Costs (\$)
	412	1516.46
	416	504.11
	419	63 11. 93
	429	2599.34
1 999	430	49 11. 25
	435	11530.38
	565	1675.81
	Maintenance for Year	29049.28
	Maintenance per Lane-Mile	610.54
	412	583.20
	414	9026.43
	416	1747.99
	419	176.29
1998	435	2294.70
1770	441	429.58
	565	504.90
	580	941.69
	Maintenance for Year	15704.78
	Maintenance per Lane-Mile	330.07
	412	366.20
	419	345.00
	435	837.77
1997	441	949.22
	565	483.78
	Maintenance for Year	2981.97
	Maintenance per Lane-Mile	62.67
	414	74.80
	416	215.88
	419	1581.60
1 996	441	234.70
	565	75.11
	Maintenance for Year	2182.09
	Maintenance per Lane-Mile	45.86
	412	1992.70
	416	476.16
	419	292.09
	429	1002.95
1995	430	1518.28
	441	762.07
	565	349.93
	Maintenance for Year	6394.18
	Maintenance per Lane-Mile	134.39

Year	Maintenance Function	Total Costs (\$)
	412	1179.07
	413	4212.34
	414	1310.49
	416	2754.49
1 994	419	422.96
	44 1	435.54
	565	3197.35
	Maintenance for Year	13512.24
	Maintenance per Lane-Mile	283.99
	413	21125.65
	416	497.23
1 993	44 1	2721.70
	Maintenance for Year	24344.58
	Maintenance per Lane-Mile	511.66
	416	610.27
	44 1	2538.67
1 992	565	197.10
	Maintenance for Year	3346.04
	Maintenance per Lane-Mile	70.32
	419	316.26
	44 1	1956.45
1 99 1	565	696.65
	Maintenance for Year	2969.36
	Maintenance per Lane-Mile	62.41
	419	154.48
	430	421.68
	435	56.51
1990	44 1	1488.24
	565	1071.85
	Maintenance for Year	3192.76
	Maintenance per Lane-Mile	67.10

Table J-13: Maintenance Costs for Highway 79

Route and Section:	Hwy 79 Section 5
Length of Section (miles):	8.48
Number of Lanes:	4

Year	Maintenance Function	Total Costs (\$)
	413	7954.66
1000	419	965.92
1999	Maintenance for Year	8920.58
	Maintenance per Lane-Mile	262.99
	419	2858.07
1009	565	158.87
1990	Maintenance for Year	3016.94
	Maintenance per Lane-Mile	88.94
	412	249.35
	414	6160.08
	419	2727.09
1 99 7	565	528.30
	580	-1757.21
	Maintenance for Year	7907.61
	Maintenance per Lane-Mile	233.13
	419	714.15
1006	435	15863.37
1990	Maintenance for Year	16577.52
	Maintenance per Lane-Mile	488.72
	419	2749.75
	435	1397.53
1005	44 1	621.05
1995	565	273.21
	Maintenance for Year	5041.54
	Maintenance per Lane-Mile	148.63
	412	185.18
	419	3137.16
1 994	44 1	141.56
	Maintenance for Year	3463.90
	Maintenance per Lane-Mile	102.12

Year	Maintenance Function	Total Costs (\$)
	412	197.68
	416	948.20
	419	437.32
1002	435	3982.75
1995	441	41.81
	565	62.15
	Maintenance for Year	5669.91
	Maintenance per Lane-Mile	167.16
	412	37.91
	413	2332.92
	419	397.15
1 992	441	364.27
	565	67.35
	Maintenance for Year	3199.60
	Maintenance per Lane-Mile	94.33
	419	1491.45
	435	960.98
1 99 1	441	110.60
	565	53.33
	Maintenance for Year	2616.36
	Maintenance per Lane-Mile	77.13

Table J-14: Maintenance Costs for Highway 49

430

441 565

Maintenance for Year

412

414

419

430

435

441

Maintenance for Year

411

412

413

414

419

429

430

432

441

565

Maintenance for Year

Maintenance per Lane-Mile

Maintenance per Lane-Mile

Maintenance per Lane-Mile

1**999**

1**998**

1997

	Route and Section: Length of Section (miles): Number of Lanes:	Hwy 49 Section 2 24.00 4
Year	Maintenance Function	Total Costs (\$)
	412	1147.78
	414	4188.93
	416	575.63
	419	1359.53
1000	429	431.15

1244.71 1887.09

207.34

11042.16

115.02

6466.49

6485.43

2573.28

684.20

2044.80

7186.01

25440.21

265.00

270.43

1171.73

3059.41

5092.34

972.38

211.42

635.61

4892.99

714.26

953.34

17973.91

187.23

17		T 1 1 () (A)
Year	Maintenance Function	Total Costs (\$)
1 996	412	3345.15
	414	1737.04
	416	533.04
	419	2090.45
	44 1	2419.86
	565	343.16
	Maintenance for Year	10468.70
	Maintenance per Lane-Mile	109.05
	412	1963.65
	414	356.09
	416	1326.95
	419	2237.88
1005	429	402.23
1995	430	795.83
	433	534.09
	441	7015.66
	Maintenance for Year	14632.38
	Maintenance per Lane-Mile	152.42
	412	3193.94
	413	2479.38
	414	5684.68
	416	63.60
1004	419	1407.48
1994	435	2025.21
	441	11904.00
	565	140.00
	Maintenance for Year	26898.29
	Maintenance per Lane-Mile	280.19
	· · · · · · · · · · · · · · · · · · ·	

Table J-15: Maintenance Costs for Highway 270

	Route and Section:	Hwy 270 Section 6
	Length of Section (miles):	8.86
	Number of Lanes:	5
Year	Maintenance Function	Total Costs (\$)
	412	3632.45
	413	135.73
	419	12790.15
1 999	441	1492.41
	565	60.20
	Maintenance for Year	18110.94
	Maintenance per Lane-Mile	408.82
	411	162.32
	412	32124.12
	414	484.75
	419	13846.10
	429	3726.97
1 998	430	28535.80
	435	5749.15
	441	13905.69
	565	190.57
	Maintenance for Year	98725.47
	Maintenance per Lane-Mile	2228.57
	412	307.34
	419	8601.78
	441	5760.43
1997	565	133.54
	Maintenance for Year	14803.09
	Maintenance per Lane-Mile	334.16
	411	6.93
	412	376.74
	419	4526.60
1996	441	2421.90
	565	58.10
	Maintenance for Year	7390.27
	Maintenance per Lane-Mile	166.82
	411	151.37
	412	2950.87
	419	3915.77
	429	398.85
	430	874.88
1995	435	14790 25
	441	7268 74
-	565	95.00
	Maintenance for Vear	30445 73
	Maintenance nor I and Mile	697 76
	Maintenance per Lane-Mile	007.20

Year	Maintenance Function	Total Costs (\$)
	412	2680.56
	419	6238.62
	429	60.39
1 994	430	773.95
	441	1980.18
	Maintenance for Year	11733.70
	Maintenance per Lane-Mile	264.87
	412	2784.92
	413	3555.49
1002	419	4718.52
1995	441	1830.11
	Maintenance for Year	12889.04
	Maintenance per Lane-Mile	290.95
	412	2586.39
	414	1 48 1. 9 4
1002	419	2118.81
1992	435	885.06
	Maintenance for Year	7072.20
	Maintenance per Lane-Mile	159.64
	412	350.39
	419	4535.95
	430	486.78
1 99 1	435	6834.96
	44 1	139.86
	Maintenance for Year	12347.94
	Maintenance per Lane-Mile	278.73
	412	2852.79
	413	11304.43
	419	2295.80
1990	441	82.12
	565	279.55
	Maintenance for Year	16814.69
	Maintenance per Lane-Mile	379.56

Table J-15 (Continued): Maintenance Costs for Highway 270

Route and Section:	Hwy 270 Section 6
Length of Section (miles):	8.86
Number of Lanes:	5

Year	Maintenance Function	Total Costs (\$)
	412	923.33
1 989	414	725.32
	419	1473.07
	44 1	604.04
	Maintenance for Year	3725.76
	Maintenance per Lane-Mile	84.10
	412	1385.05
	413	969.46
	419	1651.88
1 988	44 1	475.96
	565	113.73
	Maintenance for Year	4596.08
	Maintenance per Lane-Mile	103.75
	412	507.50
	419	4694.85
1097	44 1	769.76
190/	565	313.95
	Maintenance for Year	6286.06
	Maintenance per Lane-Mile	141.90
	412	1312.59
	413	5323.48
1096	419	518.86
1960	565	26 1.17
	Maintenance for Year	7416.10
	Maintenance per Lane-Mile	167.41
	412	354.52
	419	1403.56
	435	1127.96
1985	441	428.26
	565	141.96
	Maintenance for Year	3456.26
	Maintenance per Lane-Mile	78.02

Year	Maintenance Function	Total Costs (\$)
1 984	412	1290.50
	419	89.94
	Maintenance for Year	1380.44
	Maintenance per Lane-Mile	31.16
	412	424.55
	419	453. 71
1092	441	611.07
1965	565	520.38
	Maintenance for Year	2009.71
	Maintenance per Lane-Mile	45.37
	412	984 .17
	412	1700.16
	413	381.10
	413	1202.12
1982	419	1092.81
	441	526.66
	565	264.87
	Maintenance for Year	6151.89
	Maintenance per Lane-Mile	138.87
	411	549.39
	411	695.27
	412	128.63
	412	602.21
	419	71.47
1 98 1	435	3614.01
	435	1103.01
	441	120.21
	565	176.21
	Maintenance for Year	7060.41
	Maintenance per Lane-Mile	159.38

Table J-16: Maintenance Costs for Highway 65

Route and Section:	Hwy 65 Section 9
Length of Section (miles):	20.85
Number of Lanes:	5

Г

Year	Maintenance Function	Total Costs (\$)
	412	6387.04
	413	2689.96
	419	8609.84
1000	435	33889.49
1999	441	3517.14
	565	261.83
	Maintenance for Year	55355.30
	Maintenance per Lane-Mile	530.99
	412	7806.93
	413	1012.03
	414	931.28
	419	5660.97
	432	227.27
1 998	436	203.13
	437	604.69
	44 1	1076.55
	565	336.26
	Maintenance for Year	17859.11
	Maintenance per Lane-Mile	171.31
	412	7605.03
	413	1275.59
	419	1758.15
1997	429	12172.39
	430	8469.99
	437	3490.33
	4 41	674.75
	565	1027.62
	Maintenance for Year	36473.85
	Maintenance per Lane-Mile	349.87

Year	Maintenance Function	Total Costs (\$)
1000	411	10272.34
	412	6092.09
	419	3391.58
	429	123.61
1990	441	9278.33
	565	828.00
	Maintenance for Year	29985.95
	Maintenance per Lane-Mile	287.64
	412	20.28
	413	6139.47
	414	5179.76
1005	419	668.18
1995	435	4828.94
	441	74148.25
	Maintenance for Year	90984.88
	Maintenance per Lane-Mile	872.76
	412	3404.31
	413	724.56
	414	320.86
	419	3440.57
1 994	435	17871.86
	44 1	3831.33
	565	436.79
	Maintenance for Year	30030.28
	Maintenance per Lane-Mile	288.06

Table J-16 (Continued): Maintenance Costs for Highway 65

Route and Section:	Hwy 65 Section 9
Length of Section (miles):	20.85
Number of Lanes:	5

Year	Maintenance Function	Total Costs (\$)
	412	5572.37
	413	405.25
	416	258.21
	419	2723.55
1993	435	67421.05
	44 1	2267.97
	565	121.15
	Maintenance for Year	78769.55
	Maintenance per Lane-Mile	755.58
	412	2680.82
	413	50.18
	419	3242.77
1002	435	85288.23
1992	44 1	4107.63
	565	607.41
	Maintenance for Year	95977.04
	Maintenance per Lane-Mile	920.64
	412	1517.27
	413	359.28
	414	-1.79
	419	8784.15
1 99 1	435	2060.11
	44 1	1235.86
	565	830.52
	Maintenance for Year	14785.40
	Maintenance per Lane-Mile	141.83
	412	4469.64
	413	734.42
1990	414	1394.95
	419	7738.55
	435	17640.87
	441	1616.25
	580	-7.56
	Maintenance for Year	33587.12
	Maintenance per Lane-Mile	322.18

Year	Maintenance Function	Total Costs (\$)
	412	6551.06
	413	4213.20
	415	111 .39
	418	1186.35
1090	419	4858.80
1909	433	2380.18
	441	2978.09
	580	-179.84
	Maintenance for Year	22099.23
	Maintenance per Lane-Mile	211.98
	412	5528.38
	413	610.54
	414	804.21
1988	419	936.09
	565	26.46
	Maintenance for Year	7905.68
	Maintenance per Lane-Mile	75.83
	412	2387.42
	419	2861.03
	429	2186.70
1987	430	1843.96
	431	59.36
	433	3512.72
	435	2890.13
	441	136.90
	580	-25.35
	Maintenance for Year	15852.87
	Maintenance per Lane-Mile	152.07

Table J-17: Maintenance Costs for Highway 412 (#10-#15)

Route and Section:	Hwy 412 Section 2
Length of Section (miles):	25.98
Number of Lanes:	5

Year	Maintenance Function	Total Costs (\$)
1000	412	1043.46
	419	5066.70
	435	26345.25
	437	167.71
1999	441	584.09
	565	16.50
	Maintenance for Year	33223.71
	Maintenance per Lane-Mile	255.76
	412	3204.43
	419	5611.23
1998	441	13190.04
	Maintenance for Year	22005.70
	Maintenance per Lane-Mile	169.40
	412	3298.69
	416	957.42
	419	6493.51
1007	435	2243.42
1997	441	155.06
	565	283.00
	Maintenance for Year	13431.10
	Maintenance per Lane-Mile	103.40

Year	Maintenance Function	Total Costs (\$)
1996	412	3071.41
	419	3304.20
	441	9402.29
	Maintenance for Year	15777.90
	Maintenance per Lane-Mile	121.46
	412	1253.36
	419	3405.21
1005	435	7916.59
1995	44 1	853.28
	Maintenance for Year	13428.44
	Maintenance per Lane-Mile	103.38
	412	1358.15
	414	1274.77
	419	799.74
	429	1300.37
1004	430	121.14
1994	435	909.66
	44 1	3159.02
	565	437.76
	Maintenance for Year	9360.61
	Maintenance per Lane-Mile	72.06

Table K-1: Economic Analysis for Highway 82 #1

	Cost/Lane-Mile	Discount Rate	1	NPW at 1990 =
Year	(\$/lane mile)	i (%)	$pwy = \frac{1}{(1+i)^n}$	Cost/Lane-Mile*pwf
	(s/lane-inne)	1(70)	to take to 1990	(\$/lane-mile)
1990	60,947	4.5	1.000	60,947.00
1990	67.10	4.5	1.000	67.10
1991	62.41	4.5	0.957	59.72
1992	70.32	4.5	0.916	64.39
1993	511.66	4.5	0.876	448.37
1994	283.99	4.5	0.839	238.14
1995	134.39	4.5	0.802	107.84
1996	45.86	4.5	0.768	35.22
1997	62.67	4.5	0.735	46.05
1998	330.07	4.5	0.703	232.10
1999	610.54	4.5	0.673	410.84
1999	-13,124	4.5	0.673	-8,831.20

Location:	Hwy 82 #1
Type of Construction:	Full-Depth Widening of Stone Base Pavement

Net Present Worth = Σ =53,825.57Increase in NPW due to Maintenance (%) =3.28

Table K-2: Economic Analysis for Highway 82 #2

Location:Hwy 82 #2Type of Construction:Full-Depth Widening of Stone Base Pavement

Year	Cost/Lane-Mile (\$/lane-mile)	Discount Rate i (%)	$pwf = \frac{1}{(1+i)^n}$	NPW at 1990 = Cost/Lane-Mile*pwf (\$/lane mile)
			to take to 1990	(s/lane-inne)
1990	60,947	4.5	1.000	60,947.00
1990	67.10	4.5	1.000	67.10
1991	62.41	4.5	0.957	59.72
1992	70.32	4.5	0.916	64.39
1993	511.66	4.5	0.876	448.37
1994	283.99	4.5	0.839	238.14
1995	134.39	4.5	0.802	107.84
1996	45.86	4.5	0.768	35.22
1 99 7	62.67	4.5	0.735	46.05
1998	330.07	4.5	0.703	232.10
1999	610.54	4.5	0.673	410.84
1999	-5,742	4.5	0.673	-3,863.82

Net Present Worth = Σ =58,792.95Increase in NPW due to Maintenance (%) =3.00

Table K-3: Economic Analysis for Highway 79 #1 and #2

Location:Hwy 79 #1 & #2Type of Construction:Stone Base Pavement

Year	Cost/Lane-Mile (\$/lane-mile)	Discount Rate i (%)	$pwf = \frac{1}{(1+i)^n}$ to take to 1990	NPW at 1990 = Cost/Lane-Mile*pwf (\$/lane-mile)
1991	252,866	4.5	0.957	241,977.03
1991	77.13	4.5	0.957	73.81
1992	94.33	4.5	0.916	86.38
1993	167.16	4.5	0.876	146.48
1994	102.12	4.5	0.839	85.63
1995	148.63	4.5	0.802	119.27
1996	488.72	4.5	0.768	375.29
1997	233.13	4.5	0.735	171.31
1998	88.94	4.5	0.703	62.54
1999	262.99	4.5	0.673	176.97
1999	-92,812	4.5	0.673	-62,453.61

Net Present Worth = Σ =180,821.11Increase in NPW due to Maintenance (%) =0.72

Table K-4: Economic Analysis for Highway 49 #1

Location:Hwy 49 #1Type of Construction:Full-Depth Widening of Stone Base Pavement

Year	Cost/Lane-Mile (\$/lane-mile)	Discount Rate i (%)	$pwf = \frac{1}{(1+i)^n}$	NPW at 1990 = Cost/Lane-Mile*pwf
			to take to 1990	(\$/lane-mile)
1999	170,785	4.5	0.673	114,921.98
1999	115.02	4.5	0.673	77.40
1999	4,640	4.5	0.673	3,122.28

Net Present Worth = Σ =118,121.66Increase in NPW due to Maintenance (%) =0.07

Table K-5: Economic Analysis for Highway 49 #2

Type of Construction:	Full-Depth widening of Stone Base Pavement			
Year	Cost/Lane-Mile (\$/lane-mile)	Discount Rate i (%)	$pwf = \frac{1}{(1+i)^n}$ to take to 1990	NPW at 1990 = Cost/Lane-Mile*pwf (\$/lane-mile)
1999	200,795	4.5	0.673	135,115.84
1999	115.02	4.5	0.673	77.40
1999	-12,729	4.5	0.673	-8,565.40

Location:Hwy 49 #2Type of Construction:Full-Depth Widening of Stone Base Pavement

Net Present Worth = Σ =126,627.84Increase in NPW due to Maintenance (%) =0.06

Table K-6: Economic Analysis for Highway 270 #1

Location:	Hwy 270 #1
Type of Construction:	Stone Base Widening of Stone Base Pavement

			-	NDW -+ 1000
	Cost/Lane-Mile	Discount Rate	$pwf = \frac{1}{1}$	NP w at $1990 =$
Year	(\$/long mile)	; (9/)	$(1+i)^n$	Cost/Lane-Mile*pwf
	(s/lane-inne)	1 (70)	to take to 1990	(\$/lane-mile)
1984	142,801	9	1.677	239,491.57
1984	31.16	9	1.677	52.26
1985	78.02	9	1.539	120.04
1986	167.41	9	1.412	236.31
1987	141.90	9	1.295	183.76
1988	103.75	9	1.188	123.27
1989	84.10	9	1.090	91.67
1990	379.56	4.5	1.000	379.56
1 99 1	278.73	4.5	0.957	266.73
1992	159.64	4.5	0.916	146.19
1993	290.95	4.5	0.876	254.96
1994	264.87	4.5	0.839	222.11
1995	687.26	4.5	0.802	551.49
1996	166.82	4.5	0.768	128.10
1997	334.16	4.5	0.735	245.55
1998	2,228.57	4.5	0.703	1,567.10
1999	408.82	4.5	0.673	275.10
1999	0	4.5	0.673	0.00

Net Present Worth = Σ =244,335.77Increase in NPW due to Maintenance (%) =2.02

Location:Hwy 270 #2Type of Construction:Full-Depth Widening of Stone Base Pavement

	Cost/Long Mile	Discount Data	<u> </u>	NPW at 1990 =
Year	Cost/Lane-Mile		$pwf = \frac{1}{(1+i)^n}$	Cost/Lane-Mile*pwf
	(\$/lane-mile)	1 (%)	to take to 1990	(\$/lane-mile)
1981	157,342	9	2.172	341,730.03
1981	159.38	9	2.172	346.16
1982	138.87	9	1.993	276.71
1983	45.37	9	1.828	82.94
1984	31.16	9	1.677	52.26
1985	78.02	9	1.539	120.04
1986	167.41	9	1.412	236.31
1987	141.90	9	1.295	183.76
1988	103.75	9	1.188	123.27
1989	84.10	9	1.090	91.67
1990	379.56	4.5	1.000	379.56
1991	278.73	4.5	0.957	266.73
1992	159.64	4.5	0.916	146.19
1993	290.95	4.5	0.876	254.96
1994	264.87	4.5	0.839	222.11
1995	687.26	4.5	0.802	551.49
1996	166.82	4.5	0.768	128.10
1997	334.16	4.5	0.735	245.55
1998	2,228.57	4.5	0.703	1,567.10
1999	408.82	4.5	0.673	275.10
1999	0	4.5	0.673	0.00

Net Present Worth = Σ =

Increase in NPW due to Maintenance (%) =

347,280.03 1.62

Table K-8: Economic Analysis for Highway 65 #1

Location:	Hwy 65 #1
Type of Construction:	Stone Base Widening of Stone Base Pavement

Year	Cost/Lane-Mile (\$/lane-mile)	Discount Rate i (%)	$pwf = \frac{1}{(1+i)^n}$ to take to 1990	NPW at 1990 = Cost/Lane-Mile*pwf (\$/lane-mile)
1987	105,955	9	1.295	137,214.80
1987	152.07	9	1.295	196.94
1988	75.83	9	1.188	90.09
1989	211.98	9	1.090	231.06
1990	322.18	4.5	1.000	322.18
1991	141.83	4.5	0.957	135.72
1992	920.64	4.5	0.916	843.06
1993	755.58	4.5	0.876	662.11
1994	288.06	4.5	0.839	241.56
1995	872.76	4.5	0.802	700.35
1996	287.64	4.5	0.768	220.88
1997	349.87	4.5	0.735	257.09
1998	171.31	4.5	0.703	120.46
1999	530.99	4.5	0.673	357.31
1999	-46,166	4.5	0.673	-31,065.31

Net Present Worth = Σ = 110,528.29

Increase in NPW due to Maintenance (%) =

Table K-9: Economic Analysis for Highway 65 #2, and #10

Location:	Hwy 65 #2, & #10
Type of Construction:	Full-Depth Widening of Stone Base Pavement

	Cost/Lane-Mile	Discount Rate	$pwf = \frac{1}{1}$	NPW at 1990 =
Year	(\$/lana mila)		$(1+i)^{n}$	Cost/Lane-Mile*pwf
	(s/lane-inne)	1 (70)	to take to 1990	(\$/lane-mile)
1988	96,469	9	1.188	114,614.82
1988	75.83	9	1.188	90.09
1989	211.98	9	1.090	231.06
1990	322.18	4.5	1.000	322.18
1991	141.83	4.5	0.957	135.72
1992	920.64	4.5	0.916	843.06
1993	755.58	4.5	0.876	662.11
1994	288.06	4.5	0.839	241.56
1995	872.76	4.5	0.802	700.35
1996	287.64	4.5	0.768	220.88
1 99 7	349.87	4.5	0.735	257.09
1998	171.31	4.5	0.703	120.46
1999	530.99	4.5	0.673	357.31
1999	0	4.5	0.673	0.00

Net Present Worth = Σ =

Increase in NPW due to Maintenance (%) =

118,796.69 3.65

4.13

Table K-10: Economic Analysis for Highway 65 #11

Hwy 65 #11 Location: Type of Construction: Full-Depth Widening of Stone Base Pavement

Year	Cost/Lane-Mile (\$/lane-mile)	Discount Rate i (%)	$pwf = \frac{1}{(1+i)^n}$ to take to 1990	NPW at 1990 = Cost/Lane-Mile*pwf (\$/lane-mile)
1988	96,469	9	1.188	114,614.82
1988	75.83	9	1.188	90.09
1989	211.98	9	1.090	231.06
1990	322.18	4.5	1.000	322.18
1991	141.83	4.5	0.957	135.72
1992	920.64	4.5	0.916	843.06
1993	755.58	4.5	0.876	662.11
1994	288.06	4.5	0.839	241.56
1995	872.76	4.5	0.802	700.35
1996	287.64	4.5	0.768	220.88
1997	349.87	4.5	0.735	257.09
1998	171.31	4.5	0.703	120.46
1999	530.99	4.5	0.673	357.31
1999	-10,797	4.5	0.673	-7,265.35

Net Present Worth = Σ = 111,531.34 Increase in NPW due to Maintenance (%) = 3.90

Table K-11: Economic Analysis for Highway 65 #12

Location:

Hwy 65 #12 Type of Construction: Stone Base Widening of Stone Base Pavement

Year	Cost/Lane-Mile (\$/lane-mile)	Discount Rate i (%)	$pwf = \frac{1}{(1+i)^n}$ to take to 1990	NPW at 1990 = Cost/Lane-Mile*pwf (\$/lane-mile)
1987	105,955	9	1.295	137,214.80
1987	152.07	9	1.295	196.94
1988	75.83	9	1.188	90.09
1989	211.98	9	1.090	231.06
1990	322.18	4.5	1.000	322.18
1991	141.83	4.5	0.957	135.72
1992	920.64	4.5	0.916	843.06
1993	755.58	4.5	0.876	662.11
1994	288.06	4.5	0.839	241.56
1995	872.76	4.5	0.802	700.35
1996	287.64	4.5	0.768	220.88
1 99 7	349.87	4.5	0.735	257.09
1998	171.31	4.5	0.703	120.46
1999	530.99	4.5	0.673	357.31
1999	-59,093	4.5	0.673	-39,763.94

Net Present Worth = Σ =

Increase in NPW due to Maintenance (%) =

101,829.66 4.49

Table K-12: Economic Analysis for Highway 412 #10

Location:Hwy 412 #10Type of Construction:Stone Base Pavement

	Cost/Lana Mila	Discount Pata	1	NPW at 1990 =
Year	(\$/long mile)		$pwy = \frac{1}{(1+i)^n}$	Cost/Lane-Mile*pwf
	(s/lane-inne)	1 (70)	to take to 1990	(\$/lane-mile)
1994	200,611	4.5	0.839	168,224.63
1994	72.06	4.5	0.839	60.43
1995	103.38	4.5	0.802	82.96
1996	121.46	4.5	0.768	93.27
1997	103.40	4.5	0.735	75.98
1998	169.40	4.5	0.703	119.12
1999	255.76	4.5	0.673	172.10
1999	-65,655	4.5	0.673	-44,179.54

Net Present Worth = Σ =124,648.95Increase in NPW due to Maintenance (%) =0.49

Table K-13: Economic Analysis for Highway 412 #11

Location:Hwy 412 #11Type of Construction:Stone Base Pavement

	Cost/Lana Mila	Discount Pata	1	NPW at 1990 =
Year	(\$/lana mile)		$pwy = \frac{1}{(1+i)^n}$	Cost/Lane-Mile*pwf
	(s/lane-inne)	1 (70)	to take to 1990	(\$/lane-mile)
1994	200,611	4.5	0.839	168,224.63
1994	72.06	4.5	0.839	60.43
1995	103.38	4.5	0.802	82.96
1996	121.46	4.5	0.768	93.27
1997	103.40	4.5	0.735	75.98
1998	169.40	4.5	0.703	119.12
1999	255.76	4.5	0.673	172.10
1999	-70,183	4.5	0.673	-47,226.45

Net Present Worth = Σ = 121,602.03

Increase in NPW due to Maintenance (%) = 0.50

Table K-14: Economic Analysis for Highway 412 #12

Location:Hwy 412 #12Type of Construction:Full-Depth Widening of Stone Base Pavement

	Cost/Lana Mile	Discount Pate	1	NPW at 1990 =
Year	(\$/lang mile)		$pwy = \frac{1}{(1+i)^n}$	Cost/Lane-Mile*pwf
	(s/lane-inne)	1(70)	to take to 1990	(\$/lane-mile)
1994	86,453	4.5	0.839	72,496.14
1994	72.06	4.5	0.839	60.43
1995	103.38	4.5	0.802	82.96
1996	121.46	4.5	0.768	93.27
1997	103.40	4.5	0.735	75.98
1998	169.40	4.5	0.703	119.12
1999	255.76	4.5	0.673	172.10
1999	-37,563	4.5	0.673	-25,276.31

Net Present Worth = Σ =47,823.69Increase in NPW due to Maintenance (%) =1.28

Table K-15: Economic Analysis for Highway 412 #13

Location:Hwy 412 #13Type of Construction:Full-Depth Widening of Stone Base Pavement

	Cost/Lana Mila	Discount Pata	c 1	NPW at 1990 =
Year	(\$/lang mile)		$pwf = \frac{1}{(1+i)^n}$	Cost/Lane-Mile*pwf
	(s/lane-inne)	1 (70)	to take to 1990	(\$/lane-mile)
1994	86,453	4.5	0.839	72,496.14
1994	72.06	4.5	0.839	60.43
1995	103.38	4.5	0.802	82.96
1996	121.46	4.5	0.768	93.27
1997	103.40	4.5	0.735	75.98
1998	169.40	4.5	0.703	119.12
1999	255.76	4.5	0.673	172.10
1999	-19,513	4.5	0.673	-13,130.38

Net Present Worth = Σ = 59,969.62

Increase in NPW due to Maintenance (%) = 1.02

Table K-16: Economic Analysis for Highway 412 #14

Year	Cost/Lane-Mile	Discount Rate	$pwf = \frac{1}{(1+i)^n}$	NPW at 1990 = Cost/Lane-Mile*pwf
	(s/lane-inne)	1(70)	to take to 1990	(\$/lane-mile)
1987	131,021	9	1.295	169,675.99
1987	*	9	1.295	-
1988	*	9	1.188	-
1989	*	9	1.090	-
1990	*	4.5	1.000	-
1991	*	4.5	0.957	-
1992	*	4.5	0.916	-
1993	*	4.5	0.876	-
1994	72.06	4.5	0.839	60.43
1995	103.38	4.5	0.802	82.96
1996	121.46	4.5	0.768	93.27
1997	103.40	4.5	0.735	75.98
1998	169.40	4.5	0.703	119.12
1999	255.76	4.5	0.673	172.10
1999	-25,119	4.5	0.673	-16,902.69

Location:Hwy 412 #14Type of Construction:Full-Depth Widening of Stone Base Pavement

* Maintenance costs not obtained (not significant because of such a small impact on results) Net Present Worth = $\Sigma = 153,377.16$

Increase in NPW due to Maintenance (%) = 0.40